編號:

國立成功大學九十七學年度碩士班招生考試試題

共2 頁,第/頁

系所:醫學工程研究所乙組

187

科目:電子學

本試題是否可以使用計算機: 127可使用 , 二不可使用 (請命題老師勾選)

考試日期:0301,節次:1

- 1. A modified version of differential amplifier is shown in Fig. 1. The gain may be set by varying the resistor R_G . Please compute the differential voltage gain when $R_G = 5 \text{ k}\Omega$, $R_I = 100 \text{ k}\Omega$, and $R_2 = 500 \text{ k}\Omega$. (15%)
- 2. A feedback type of transconductance amplifier is depicted in Fig. 2. Find the input resistance of the one-port network. (10%)
- 3. Find I_p and I_n in a forward-biased diode with the forward conducting current I=1 mA. The parameters for this diode are $N_A=10^{18}/\mathrm{cm}^3$, $N_D=10^{16}/\mathrm{cm}^3$, $L_p=5$ µm, $L_n=10$ µm, $D_p=10$ cm²/s, and $D_n=20$ cm²/s. (15%)
- 4. For a capacitively coupled common-emitter amplifier as depicted in Fig. 3, find the midband gain, and the value of R_L that reduces the midband gain to half. (10%) The parameters for this transistor are given as follows. $V_{CC} = V_{EE} = 10 \text{ V}, I = 1 \text{ mA},$ $R_B = 100 \text{ k}\Omega, R_C = 8 \text{ k}\Omega, R_{sig} = 5 \text{ k}\Omega, R_L = 5 \text{ k}\Omega, \beta_0 = 100, V_A = 100 \text{ V}, C_{\mu} = 1 \text{ pF},$ $f_T = 800 \text{ MHz}$, and $r_x = 50 \Omega$..

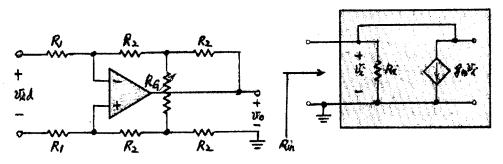


Fig. 1 Fig. 2

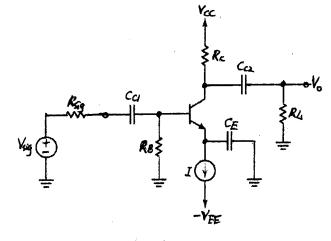


Fig. 3

(背面仍有題目,請繼續作答)

編號: 187

國立成功大學九十七學年度碩士班招生考試試題

共之 頁,第2頁

系所:醫學工程研究所乙組

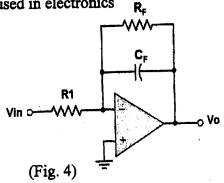
科目:電子學

本試題是否可以使用計算機: 凹可使用 , □不可使用

(請命題老師勾選)

考試日期:0301,節次:1

5. (15 %) Explain the following terminologies generally used in electronics


(a) 1-line-to-8-line demultiplexer

(b) Tristate buffer

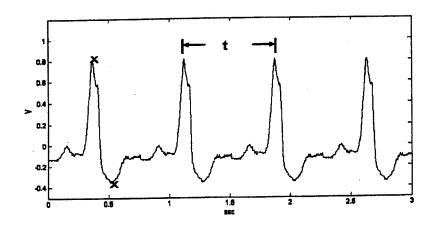
(c) Class E amplifier

(d) Hardware description language (HDL)

(e) Synchronous counter

6. (20 %) Figure 4 is the one-pole low-pass filter.

(a) Please derive the cutoff frequency and Vo(s)/Vin(s)


(b) Please choose the values of components that it can filter out frequency beyond 100 Hz with gain of -1.

(c) Draw the equivalent switched-capacitor filter of the same specifications of (b) giving the clock frequency (f_c) with equivalent resistance $R_{eq} = 1/f_c C$

7. (15 %) Figure 5 is an example trace of ECG waveform, an analogue signal recorded from human heart. You may make any assumptions in your designed circuit.

(a) Could you design a hybrid circuit, combination of analogue and digital circuits, to determine the R-R interval, the t marked in the figure, up to the time resolution of ms? (Hint: comparator and counter might be a good combination)

(b) Could you design a circuit to provide the analogue output of the peak-to-peak amplitude, marked with x's? (Hint: peak detectors, summer, inverter of OP-Amps might be needed)

(Fig. 5)