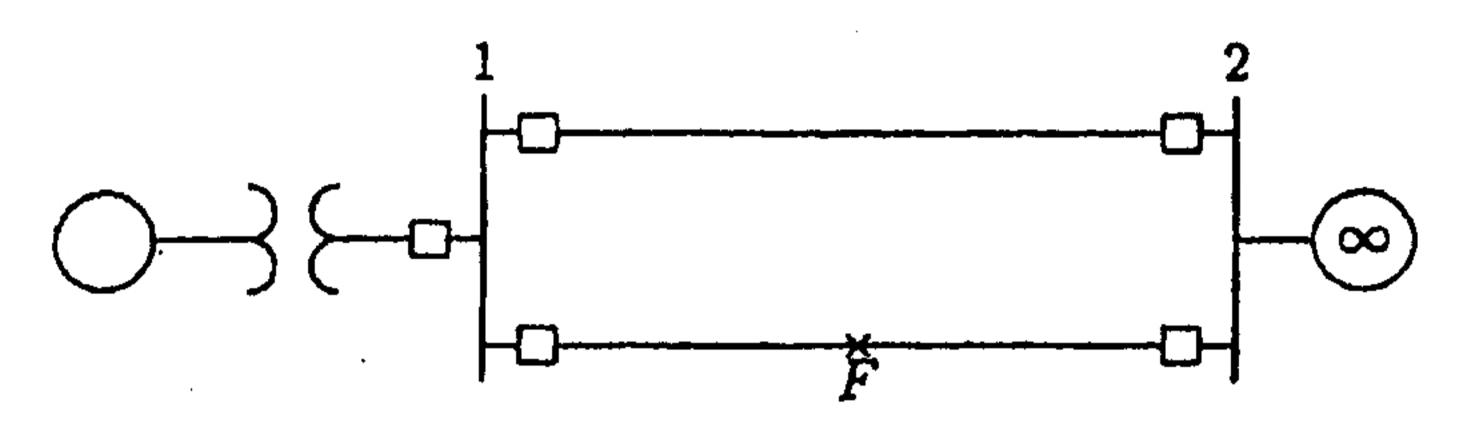
編號:

204

國立成功大學九十七學年度碩士班招生考試試題

共2頁第/頁

系所:電機工程學系丙組


科目:電力系統

D可使用 · 口不可使用

(請命題老師勾選)

考試日期:0301·節次:2

1. (20%) One 60 Hz machine system connected to infinite bus is shown below. Assume the input mechanical power P_m is constant, the generator is delivering power steadily with a power angle δ_0 . Consider a temporary three-phase bolted fault occurs at point F where F is at some distance away from the sending end. The fault is then cleared at power angle δ_C by removing the faulty line. Due to the energy conversion, the power angle reaches δ_{\max} at the stable operating region. The power angle finally returns to a new stable operating point at δ_1 .

Please answer the following:

- I. (15%) Draw the power angle curves (electric power P_e vs. power angle δ), and power line P_m . Label the operating points associated with δ_0 , δ_C , δ_{max} , δ_1 on the curves.
- II. (5%) Mark and discuss the areas for the stability criteria.
- 2. (20%) With the same 60Hz power system structure in the previous question, assume the generator has inertia constant H=5MJ/MVA, a direct transient reactance X_d '=0.3 pu is connected to a transformer with reactance $X_t = 0.1$ pu. Between the transformer and infinite bus, a pair of transmission lines (each line's reactance is 0.6pu) are delivering real power $P_e = 0.8$ pu and Q = 0.08pu to the infinite bus at a voltage of V = 1pu.
 - I. (10%) Consider the first-order differential equation

$$\frac{dx}{dt} = f(x)$$

Express the solution x(t) by using Euler's method and point out its flaw

II. (10%) A sudden line trip occurs on one of the transmission line and the faulty line is removed immediately at t=0 second. Please find the power angle δ in degree and rotor speed deviation $\Delta\omega$ in rad/sec after the fault at t=0.02 second. Using the Euler method with a step size of $\Delta t=0.01$ second. Perform two iterations.

swing equation:
$$\frac{d^2 \delta}{dt^2} = \frac{\pi f_o}{H} (P_m - P_{max} \sin \delta)$$

編號:

204

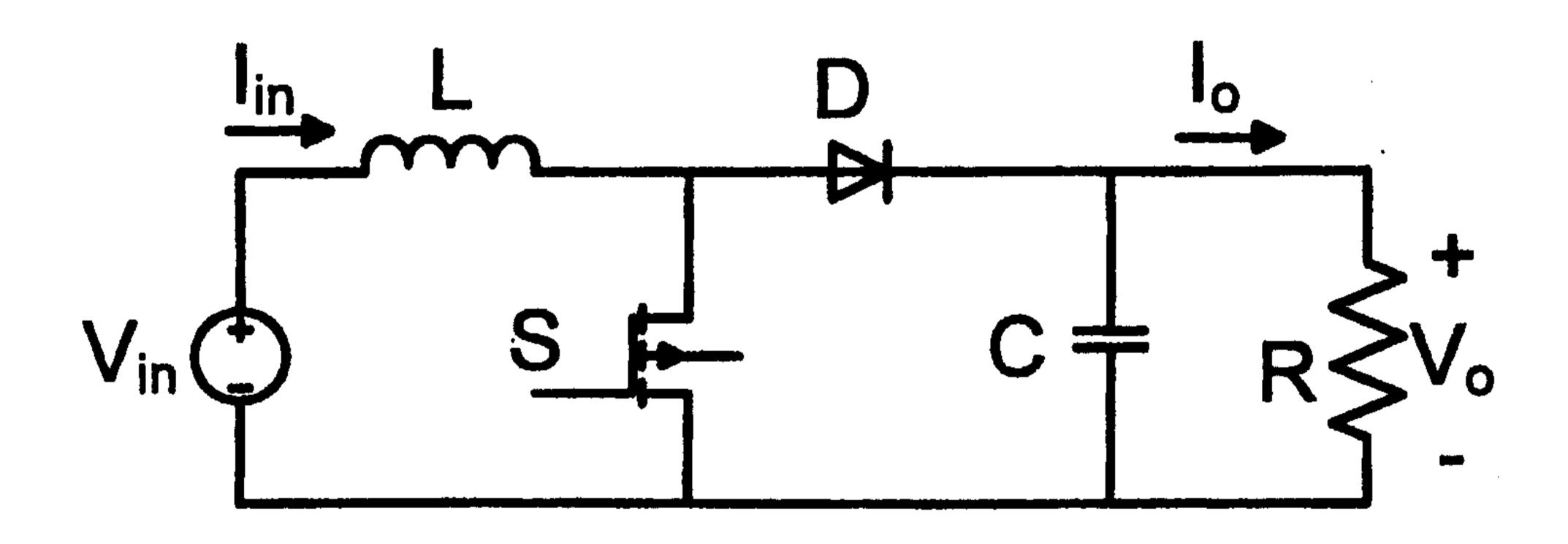
国立成功大學九十七學年度碩士班招生考試試題

共~頁・第ン頁

系所: 電機工程學系丙組

科目:電力系統

本試
是否可以使用計算機:


(請命題老師勾選)

考試日期:0301·節次:2

3. (20%) The following data were obtained for a 20kVA, 60Hz, 2kV: 200V distribution transformer tested at 60Hz:

With high—voltage winding open-circuited 240V 1A 120Watts With low-voltage terminals short-circuited 50V 8A 280Watts

- a) (10%) Compute the efficiency at full-load current and the rated terminal voltage at 0.8 lagging power factor.
- b) (10%) Assume that the load power factor is varied while the load current and secondary terminal voltage are held constant. Use a phasor diagram to determine the load power factor for which the regulation is greatest. What is this regulation?
- 4. (20%) As following figure, Vin=10V, L=1mH, R=500 Ω , the switching frequency is 100kHz and duty cycle of S is 50%.
- a) (10%) Is this converter operating in continuous mode or discontinuous mode? And why?
- b) (10%) What is the output voltage Vo and the average input current lin?

- 5. (20%) Short Answer
- a) (7%) What are the differences between ZCS (zero current switching) and ZVS (zero voltage switching)?
- b) (7%) What are the advantages of the double-squirrel-cage rotors?
- c) (6%) How to obtain the reverse rotation of the single-phase induction motors?