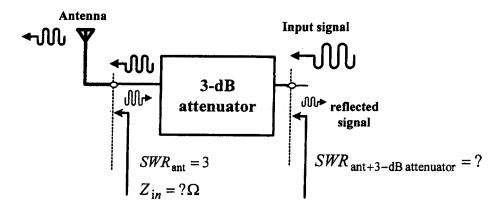
223

## 國立成功大學九十七學年度碩士班招生考試試題

共 4頁,第/頁

系所:電腦與通信工程研究所 內 紀

科目:電磁學與電磁波


本試題是否可以使用計算機:

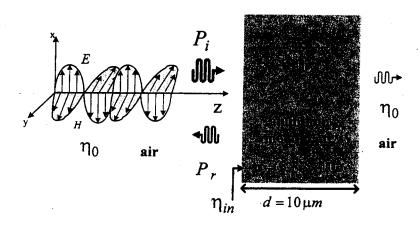
☑可使用 , □不可使用

(請命題老師勾選)

考試日期: 0301·節次:2

- \* Useful constants:  $\varepsilon_0 = 10^{-9/36\pi}$ ;  $\mu_0 = 4\pi \times 10^{-7}$ ;  $\eta_0 = 120\pi$
- 1. If the input SWR of an antenna is  $SWR_{ant}=3$ , what is the  $SWR_{ant+3-dB \ attenuator}$  when the antenna is connected to a 3-dB attenuator (the attenuator is perfectly matched in a 50- $\Omega$  system:  $S_{12}=S_{12}=0.707$ ,  $S_{11}=S_{22}=0$ )? (10%)




- 2. A 1-GHz EM plane wave is normally incident on an infinitely-long aluminum metal plate. Determine the ratio of the reflected power  $(P_r)$  to the incident power  $(P_i)$ . (20%)
  - \* Note
  - (1) For a good conductor, the propagation constant  $\gamma$  and intrinsic impedance  $\eta_c$  can be

approximated as 
$$\gamma = \alpha + j\beta = j\omega\sqrt{\mu\epsilon(1 + \frac{\sigma}{j\epsilon\omega})} \approx \sqrt{\pi f\mu\sigma} + j\sqrt{\pi f\mu\sigma}$$

$$\eta_c = \sqrt{\mu/\epsilon_c} = \sqrt{\mu/\epsilon(1 - j\frac{\sigma}{\epsilon\omega})} \approx (1 + j)\sqrt{(\pi f\mu)/\sigma} = \sqrt{(\omega\mu)/\sigma}\angle 45^{\circ}$$

(2)  $\eta_{in}$  can be determined by using a transmission-line analogy for the input impedance  $Z_{in}$  of a lossy transmission line  $(Z_1)$  with a length d and a load  $Z_L$ 

$$Z_{in} = Z_1 \frac{Z_L + Z_1 \tanh(\gamma d)}{Z_1 + Z_L \tanh(\gamma d)}$$



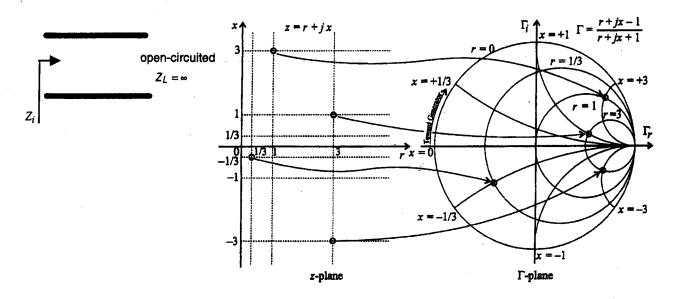
(背面仍有題目.請繼續作答)

223

國立成功大學九十七學年度碩士班招生考試試題

共 4 頁,第2頁

系所:電腦與通信工程研究所 內 紀


科目:電磁學與電磁波

本試題是否可以使用計算機: ☑可使用 , □不可使用

(請命題老師勾選)

考試日期:0301,節次:2

- 3. For an open-circuited 50- $\Omega$  transmission line operated at 3 GHz and with a phase velocity of 0.77 C (the speed of light), find the line length l (mm) to create an equivalent capacitance of 2 pF. (15%)
  - (a) Using the transmission line impedance formula:  $Z_i = Z_0 \frac{Z_L + jZ_0 \tan(\beta l)}{Z_0 + jZ_L \tan(\beta l)}$
  - (b) Using the Smith Chart. Draw a simple figure of the Smith chart transformation for this solution.



- 4. An automotive tunnel (汽車隧道) with a rectangular cross section (width a = 15m & height b = 6 m) has aluminum metallic walls ( $\sigma_c = 4 \times 10^8$ ). If this tunnel is treated as a waveguide:
  - (a) Determine the lowest frequency of the radio wave that will propagate through this tunnel and write down the mode ( $TE_{mn}$  or  $TM_{mn}$ ) of this wave. (5%)
  - (b) Let the length of the tunnel is 100 m and a 12-MHz radio wave propagating into this tunnel. Find the total attenuation (dB) of this radio wave through this tunnel. (10%)
  - (c) Determine the VSWR of the radio wave at the end of the tunnel-waveguide (like having a free-space load). (10%)

Note: Waveguide wavelength and  $TE_{10}$ -mode impedance

$$\lambda_g = \lambda / \sqrt{1 - (f_c/f)^2}$$
 &  $Z_{TE} = \eta_0 / \sqrt{1 - (f_c/f)^2}$ 

Waveguide  $TE_{10}$  mode attenuation constant:

$$\alpha_{c_{TE10}} = \frac{\lambda}{b\lambda_g} \sqrt{\frac{\pi}{\lambda \eta_0 \sigma_c}} \left[ 1 + \left( \lambda_g / \lambda_c \right)^2 \left( 1 + 2 \frac{b}{a} \right) \right]$$

## 國立成功大學九十七學年度碩士班招生考試試題

共4頁,第2頁

系所: 電腦與通信工程研究所 內 組

科目:電磁學與電磁波

本試題是否可以使用計算機:

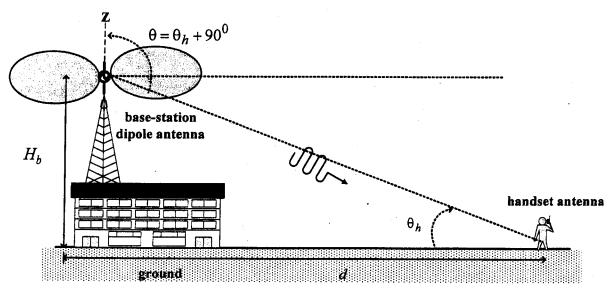
223

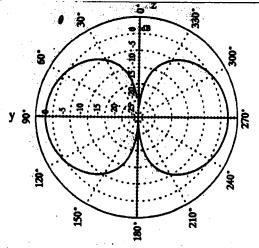
☑可使用 , □不可使用

(請命顯老師勾選)

考試日期:0301·節次:2.

5. A 1-GHz base-station <u>dipole antenna</u> with a half-length  $L=0.25 \lambda$  is located at a height of  $H_b=30$  m and the transmitter power is 20 W. Let the handset antenna has a gain of 0 dBi and input SWR=3. The dipole antenna gain-pattern (dBi) is shown in the figure.


- (a) If the <u>cable feeder loss</u> of the base-station antenna is 3 dB, determine the antenna radiation power  $P_{rad}(W)$ , the radiation power density  $S(W/m^2)$  and E-field strength E(V/m) at the human operator with d = 50 m. (20 %)
- (b) If the handset receiver sensitivity is  $P_{\text{sen}}$ =-100 dBm and the <u>power absorption rate</u> of the human head to the handset antenna is 50%, compute the maximum communication distance d. (10%)
- \* Note: Neglect the ground effect and assume in free space.


Free-space Friis Power Transmission Formula:  $P_r = P_t G_t (\frac{\lambda}{4\pi R})^2 G_r$ 

 $P_t$ : antenna transmitting power  $G_t$ : transmitting antenna gain

 $P_r$ : antenna receiving power  $G_r$ : receiving antenna gain

\* The above formula does not include the antenna mismatch loss.



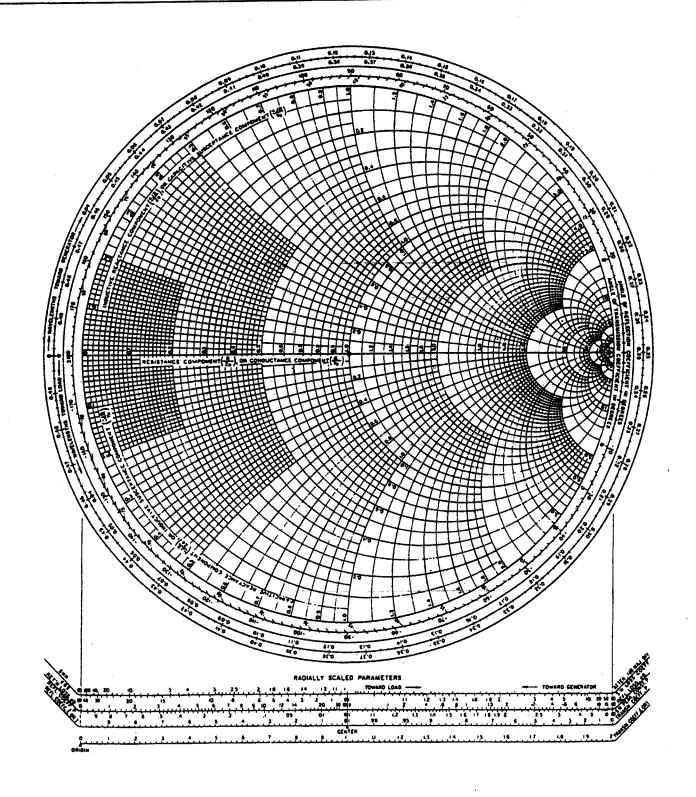


Half-wavelength Dipole Antenna B-Plane Directive Gain Pattern

(背面仍有題目.請繼續作答)

223

國立成功大學九十七學年度碩士班招生考試試題


科目:電磁學與電磁波

系所:電腦與通信工程研究所 內組

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

考試日期:0301,節次:2,

共 4 頁,第4頁

