編號:

230

國立成功大學九十七學年度碩士班招生考試試題

共 3 頁 第/頁

系所: 資訊工程學系

科目:計算機數學

本試題是否可以使用計算機: □可使用 , ☑不可使用

(請命題老師勾選)

考試日期:0301,節次:3

Part I. Linear Algebra (50%)

單選題 (每題 5%)

- 1. The vectors $[1 \ 1 \ 1 \ 1]^T$, $[1 \ 0 \ -1 \ 0]^T$, $[1 \ -2 \ -3 \ 4]^T \in \mathbb{R}^4$ are
 - (A) linearly independent.
 - (B) linearly dependent.
 - (C) mutually orthogonal.
 - (D) able to form a basis for R^4 .
 - (E) able to form a spanning set for R^4 .

2. If
$$A = \begin{bmatrix} 4 & 2 & 5 \\ -1 & 0 & 5 \\ 2 & 1 & 2 \end{bmatrix}$$
, then

- (A) rank(A) = 2.
- (B) det(A) = 1.
- (C) $[2 \ 1 \ -2]^T$ is in the nullspace of A.
- (D) If $b = [0 \ 1 \ 0]^T$, the linear system Ax = b is consistent.

(E)
$$A$$
 is row equivalent to $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

3.
$$A = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix}$$
. Which of the following is **NOT** true?

- (A) 0 is an eigenvalue of e^{λ} .
- (B) e is an eigenvalue of e^A .
- (C) A is diagonalizable.
- (D) e^A is diagonalizable.
- (E) There exists a QR factorization for e^{A} .

Which L is a linear transformation?

(A)
$$L(X) = X + \begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}, X \in \mathbb{R}^{2\times 4}$$
.

(B)
$$L(A) = A - A^{T}, A \in \mathbb{R}^{n \times n}$$
.

(C)
$$L([x_1 \ x_2 \ x_3]^T) = x_1 + \sqrt{2}x_2 - x_3$$
.

(D)
$$L\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{bmatrix} x_1 + x_2 \\ 1 \end{bmatrix}$$
.

(E) None of the above is linear.

編號:

230

圆立成功大學九十七學年度碩士班招生考試試題

共 3 頁,第2頁

系所: 資訊工程學系

科目:計算機數學

本試題是否可以使用計算機: □可使用 , □不可使用 (請命題老師勾選)

考試日期:0301,節次:3

5. For any $f, g \in C[-\pi, \pi]$, the inner product in the vector space $C[-\pi, \pi]$ is defined by $\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x)dx$.

If $(1 + \cos x) \in C[-\pi, \pi]$, the length $||1 + \cos x||$ is

- (A) $\sqrt{2\pi}$ (B) $\sqrt{3}$ (C) π (D) $\sqrt{2}$ (E) None of the above is true.
- 6. Which matrix diagonalizes $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$?
 - (A) $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 1/\sqrt{2} \\ 0 & -1/\sqrt{2} \end{bmatrix}$ (E) None of the above is true.
- 7. Which matrix has trace 1 and determinant -2?
 - (A) $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$ (C) $\begin{bmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix}$ (D) $\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$ (E) None of the above is true.
- 8. Let bases $E = \{\mathbf{v}_1, \mathbf{v}_2\} = \left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ and $F = \{\mathbf{u}_1, \mathbf{u}_2\} = \left\{ \begin{bmatrix} 5 \\ 2 \end{bmatrix}, \begin{bmatrix} 7 \\ 3 \end{bmatrix} \right\}$.

What is the transition matrix from E to F?

- (A) $\begin{bmatrix} -9 & 16 \\ -4 & 7 \end{bmatrix}$ (B) $\begin{bmatrix} -5 & -4 \\ 4 & 3 \end{bmatrix}$ (C) $\begin{bmatrix} -9 & -4 \\ 16 & 7 \end{bmatrix}$ (D) $\begin{bmatrix} -5 & 4 \\ -4 & 3 \end{bmatrix}$ (E) None of the above is true.
- 9. $L(p(x)) = \left[\frac{dp(x)}{dx}\Big|_{x=1}\right]$. If $p(x) = \alpha x + \beta$, which matrix A satisfies $L(p(x)) = A\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$?
 - (A) $A = \begin{bmatrix} 1 & 0 \\ 1 & 1/2 \end{bmatrix}$ (B) $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ (C) $A = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$ (D) $A = \begin{bmatrix} 1 & 1/2 \\ 1 & 1 \end{bmatrix}$ (E) No such matrix exists.
 - 10. Let $\mathbf{x} = \begin{bmatrix} 1 & 0 & 3 & 0 \end{bmatrix}^T$, $\mathbf{u}_1 = \begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix}^T / \sqrt{3}$ and $\mathbf{u}_2 = \begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}^T / \sqrt{3}$. $S = \text{span}\{\mathbf{u}_1, \mathbf{u}_2\}$.

Let T be the orthogonal complement of S, $T = S^{\perp}$. The vector in T that is closest to x is

- (A) $(1/3)[5 \ 3 \ 4 \ 1]^T$ (B) $(1/3)[-2 \ -3 \ 5 \ -1]^T$ (C) $(-2/3)[0 \ -2 \ -1 \ -2]^T$ (D) $(1/6)[3 \ -11 \ 4 \ 5]^T$
- (E) None of the above is true.

編號: 230

國立成功大學九十七學年度碩士班招生考試試題

共 3 頁 第3頁

系所: 資訊工程學系

科目:計算機數學

本試題是否可以使用計算機: □可使用 , ☑不可使用 (請命題老師勾選)

考試日期:0301·節次:3

Part II. Discrete Mathematics 2008 (50%)

[10%]

(1) (5%) If statement q has the truth value 1, determine all truth value assignments for the primitive statements, p, r, and s for which the truth value of statement

$$(q \to [(\neg p \lor r) \land \neg s]) \land [\neg s \to (\neg r \land q)]$$

is 1.

(2) (5%) Express the negation of the statement $p \leftrightarrow q$ in term of the connectives \wedge and \vee .

[15%]

- (1) (5%) Determine which of the following statements are true and which are false.
 - $Z^+ \subseteq Q^+$ (a)
 - $R^+ \cap C = R^+$
 - $R^+ \subseteq Q$

 - (d) $Q^* \cap Z = Z$ (e) $Z^+ \cup R^+ = R^+$
- (2) (10%) Prove that for all $n \in \mathbb{Z}^+$, $n > 3 \Longrightarrow 2^n < n!$
- [15%] Let M be the finite state machine in the following figure. For states S_i , S_j , where $0 \le i, j \le 2$, let O_{ij} denote the set of all nonempty output strings that M can produce as it goes from state S_1 , S_2 , e.g., $O_{20} = \{0\}\{1, 00\}^*$. Find O_{22} , O_{11} , and O_{10} .

4. [10%] Find the coefficient of x^{50} in $(x^7 + x^8 + x^9 + \cdots)^6$.