295 編號: 國立成功大學九十七學年度碩士班招生考試試題 頁,第I頁 系所:統計學系 科目:機率論(含數理統計 考試日期:0302,節次:2 本試題是否可以使用計算機:□可使用 ,「一个可使用 (請命壓老師勾選) I. (40 points) Suppose that random variable X takes values -1, 0, 1 with respective probabilities $p_1 = \theta^2$, $p_2 = 2\theta(1-\theta)$, $p_3 = (1-\theta)^2$ given by the Hardy-Weinberg proportions, $0<\theta<1$. A sample size of n, X_1 , X_2 ,..., X_n , are obtained. - (a). Find the likelihood function. - (b). Find the maximum likelihood estimator (MLE) T of θ . - (c). Let H_0 : $\theta = \theta_0$ vs H_1 : $\theta > \theta_0$. Based on minimal sufficient statistic, obtain the uniformly most powerful test (UMPT) at level a. - (d). Find E(T) and Var(T). - II. (24 points) A random variable X with double exponential distribution has the following p.d.f. $$f_{\mu,\lambda}(x) = \frac{1}{2} \lambda e^{-\lambda|x-\mu|}, x \in R, \mu \in R, \lambda > 0.$$ Suppose a random sample $X_1, X_2,..., X_n$ is available, n=2m+1, m is positive integer. - (a). For λ fixed, plot the likelihood function for μ . For simplicity, you can take m=1. - (b)(continued). Find the maximum likelihood estimator for μ . - (c). If now $\mu = \mu_0$ is known, but λ is unknown, construct a 100(1- α)% confidence interval for λ based on the minimal sufficient statistic, $0 < \alpha < 1$. - III. (36 points) In a two-color microarray experiment, the gene expression level is usually represented as R/G, where R is the fluorescence intensity of Cye 5 and G is the fluorescence intensity of Cye 3. It is a common practice that both R and G follow lognormal distributions, and both are correlated, although its association is mild if the experimental process is under control. Suppose (InR, InG) follows a bivariate normal with mean μ_1 , μ_0 , variance σ_1^2 , σ_0^2 and correlation p. Let M=lnR - lnG, the differential gene expression level, and A = (lnR + lnG)/2, the abundance of mRNA. - (a). Find E(R)= μ_R and Var(R)= σ_R^2 , and show that E(R) has something to do with the Var(R) is a function of E(R) - (b). If $\sigma_R^2 = f(\mu_R)$, where f(.) is a function with continuous derivative, find a transformation of R, g(R), so that Var(g(R)) is roughly free of μ_R . - (c). Find the joint distribution of (M, A). - (d). Find E(M|A), the conditional expectation of M given A. Under which condition(s) that A has nothing to do with M?