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(15%) Consider k urns U, =1, ..., k. each of which contain m white balls and n black balls.

A ball is drawn at random from urn Uy and is placed in urn U7;. Then a ball is drawn at random

from urn U and is placed in urn Us etc. Finally, a ball is chosen at random from urn U,y and
is placed in urn [/,. A ball is then drawn at random from urn U,. Compute the probability that
this last ball is black. '

(20%) Suppose that X and Y are two jointly distributed random variable with joint probability
density function:

cray(l—x), forO0<x <1, 0<y<1,
), otherwise,

. _J'

where ¢ s a constant.
(a) Find the value of c.

(b) Find the marginal probabhility density function of X and Y.
(c) Find the conditional probability density function of Y given X=z.

(d) Are X and Y independent? Explain your answer.
(e) Find the probability P(Y < 1/2]X > 1/2).

(10%) Consider certain events Which in every time interval {{;, #»] (0 < &} < {2) occur
according to the Poisson distribution P(\(fy — t1)). Let T be the random variable denoting
the time which lapses between two consecutive such events. Derive and identify the

distribution of T bv computing the probability that 1>1.

(15%) Let X,;, 1 =1,...,n, be independent random variables such that X; has continuous
and strictly increasing cumulative distribution function Fj. Set V; = F;(X;), 1 =1,...,n.
Show that the random variable

Z=-2) log(l-Y)

i=1
is distributed as v3, .

(15%) The number of people who enter an elevator on the ground floor is a Poisson random
variable with mean 10. If there are N floors above the ground floor and if each person is
equally likely to get off at any one of these N floors, independently of where the others get
off, compute the expected number of stops that the elevator wili make before discharging all

of its passengers.
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6. {10%) Let X be a random variable with moment generating function M({{) and set
' ‘ K (1) = log(M (1)) ' _
for those #’s for which AM{{) exists. Furthermore, suppose that E(X)=p and l
l -~ Var(X) = o? are both finite. Then show that
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7. (15%) Llet X, i =1,...,n, be independent random variables distributed as Uniform(0, 1)

{ and set |
| Y, = max(Xy,...,Xn) and Z, = n{l — Y,). |
| Then show that, as n — o, one has: |
| (a) Y, converges in probability to one, _ |
| (b) Z, converges in distribution to Z, where Z has the Exponential distribution with ;
| - parameter A = 1, |
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