97學年度計量財務金融學系(所)乙組(財務工程組)碩士班入學考試

科目基礎數學(微積分、線性代數)科目代碼 5204共2頁第1頁 *請在【答案卷卡】內作答

Total: 100 points.

1. (7 points each) Fill in your answers

- $\int_0^1 \frac{\sin^{-1} x}{\sqrt{1-x^2}} dx = \underline{(a)}.$
- The interval of convergence of $\sum_{k=0}^{\infty} k! (2x-1)^k$ is (b).
- The volume enclosed by x = 0, y = 0, z = 0, and 2x + y + 3z = 6 is (c).
- Use the Newton-Raphson method to estimate $\sqrt{2}$. The iterative scheme is (d). The approximation with a precision to two decimal places is (e).
- When the point set (x,y) moves from (1,2) to (1.05,2.01), the increments dz and Δz for $z=x^2+5\,y^2$ are (f) and (g), respectively.
- 2. (15 points) Show your work to calculate the limit of

$$\frac{\sqrt{2\pi} - \int_{-\infty}^{x} e^{-z^{2}/2} dz}{x^{-\alpha} e^{-x^{2}/2}}$$

when $x \to \infty$ for each real value α .

- 3. (a) (5 points) State the Mean-Value Theorem (single variable).
 - (b) (10 points) Let h be a real-valued function and twice differentiable on the real numbers. Prove that for any a < b,

$$\frac{\partial}{\partial x} \int_a^b h(x\,z) dz = \int_a^b h'(x\,z)\,z\,dz.$$

4. A differential operator

$$\mathcal{L} = \frac{\partial}{\partial t} + \frac{\sigma^2}{2} \frac{\partial^2}{\partial x^2}$$

acting on a real-valued function $P(t, x; \sigma)$ is defined by

$$\mathcal{L}P(t,x;\sigma) = \frac{\partial P}{\partial t}(t,x;\sigma) + \frac{\sigma^2}{2} \frac{\partial^2 P}{\partial x^2}(t,x;\sigma), \tag{1}$$

where $t \in [0, \infty)$ and $x \in (-\infty, \infty)$ are variables, and $\sigma > 0$ is a parameter. Assume that $P(t, x; \sigma)$ is smooth [that means you can take partial derivatives of any order on P] and $P(t, x; \sigma)$ solves (1) [that means $\mathcal{L}P(t, x; \sigma) = 0$].

(a) (7 points) Check that for any positive integer n, $\frac{\partial^n}{\partial x^n} P(t, x; \sigma)$ solves (1) as well.

國立清華大學命題紙

97 學年度計量財務金融學系(所)乙組(財務工程組)碩士班入學考試 科目基礎數學(微積分、線性代數) 科目代碼 5204 共 2 頁第 2 頁 *請在【答案卷卡】內作答

(b) (7 points) For any real number α , T > t and any positive integer n, define

$$Q(t, x; \sigma) = \alpha (T - t) \frac{\partial^n}{\partial x^n} P(t, x; \sigma).$$

Check that it satisfies

$$\mathcal{L}Q(t,x;\sigma) = -\alpha \frac{\partial^n}{\partial x^n} P(t,x;\sigma).$$

(c) (7 points) Prove that

$$\frac{\partial P}{\partial \sigma}(t, x; \sigma) = \sigma (T - t) \frac{\partial^2 P}{\partial x^2}(t, x; \sigma).$$

[Hint: you may use $\frac{\partial}{\partial \sigma} (\mathcal{L}P) = 0$.]