國立高雄大學九十七學年度研究所碩士班招生考試試題

科目:綜合化學(II) 老試時間:100 公籍 系所:應用化學系碩士班

是否使用計算機:是

考試時間:100分鐘

本科原始成績:100分

Part I (physical chemistry)

1. The van der Waals equation is often written as the following:

(5%,複選,答錯倒扣1.25%)

$$P = \frac{RT}{V_m - b} - \frac{a}{V_m^2}$$
(1),

where V_m is the molar volume, a and b are called the van der Waals coefficients.

Which terms stated in the kinetic model for ideal gases are corrected as the van der Waals coefficients in equation (1)?

- (a) The gas consists of molecules in ceaseless random motion.
- (b) The size of the molecule is much smaller than the average distance traveled between collisions.
- (c) The molecules interact only through brief, infrequent, and elastic collisions.
- (d) The averaged kinetic energy of the molecules depends only on the Kelvin temperature of the gas.
- 2. Which of the following statement is correct:

(5%,複選,答錯倒扣1%)

- (a) The internal energy of an isolated system is constant.
- (b) $\Delta U = q + w$: The change of internal energy, heat transferred to and work done on a system are all state functions.
- (c) The maximum work that a system can do to a surrounding is by free expansion.
- (d) The Linde refrigerator is operated in a temperature range, where a gas system is cooled on expansion.
- (e) A perfect gas expands adiabatically from P_i, V_i , T_i , to P_f, V_f , T_f , its change of the internal energy is $C_v(T_f T_i) + (P_f V_f P_i V_i)$
- 3. The vibrational wavenumbers of CO₂ are 1288 cm⁻¹, 667.4 cm⁻¹, and 2349 cm⁻¹, the second being the doubly degenerate bending mode. The vibrational partition function of CO₂ at 1500 K is about:
 - (a) 0.0007 (b) 0.07 (c) 7 (d) 700 (e) 70000

(5%,單選,答錯倒扣1%)

- 4. Fill in the right statement of the following quantum principles from (i) (v):
 - → (a) Born Oppenheimer approximation
 - → (b) Quantization of energy by Planck
 - (c) The uncertainty principle by Heisenberg
 - (d) Hund's multiplicity rule
 - (e) de Broglie relation.

(5%, 答錯倒扣 1%)

國立高雄大學九十七學年度研究所碩士班招生考試試題

科目:綜合化學(II) 考試時間:100分鐘

系所:應用化學系碩士班

本科原始成績:100分

是否使用計算機:是

- (i) It is impossible to specify simultaneously, with arbitrary precision, both the momentum and the position of a particle.
- (ii) An atom in its ground state adopts a configuration with the greatest number of unpaired electrons.
- (iii)The energy of each electromagnetic oscillator is limited to discrete values and can not be varied arbitrarily.
- (iv) In the time scale while the electrons move in their field, the nuclei may be treated as stationary.
- (v) Any particle, not only photon, travels with a linear momentum p should have a wavelength given by $\lambda = h/p$.
- 5. According to the right-hand figure for an A → B reaction, which of the following statements are correct? (5%, 複選, 答錯倒扣 1%)
 - (a) The reaction is endothermic.
 - (b) The equilibrium compositions always favor the reactant.
 - (c) The equilibrium compositions always favor the product.
 - (d) Changing the reaction Gibbs energy from positive to negative can be possible by heating up the reaction system.
 - (e) The change of entropy is not important in this type of reaction.
- 6. Which of the following statement are correct? (5%, 複選, 答錯倒扣 1%)
 - (a) The FT-IR method can be used to study O2 vibration.
 - (b) The rotation-vibration spectrum of HCl can be obtained by the FT-IR spectrum.
 - (c) The rotation-vibration FT-IR spectrum of DCl shows P, Q, and R branches, which belong to transitions of $\Delta J = -1$, 0, and 1, respectively.
 - (d) UV-VIS light can be used to electronically excite C₆H₆.
 - (e) In general, the fluorescence life time is longer than the phosphorescence life time.
- 7. (a) Construct the orbital energies of Period 2 homonuclear diatomic molecules. (b) Explain why no Be₂ molecule can be formed. (c) Explain why B₂ and O₂ are paramagnetic.

(3, 1, 1%)

- 8. Calculate the mean, root mean square, and most probable velocity of N_2 at 25° C. (The velocities in an **arbitrary** order are $(2RT/M)^{1/2}$, $(8RT/\pi M)^{1/2}$, and $(3RT/M)^{1/2}$; $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$; and the molar mass of $N_2 = 28 \text{ g mol}^{-1}$.) (速率定義 3%,速率值 2%)
- 9. The rate law of the $2A \rightarrow P$ reaction was determined as the following:

$$\frac{d[P]}{dt} = \frac{a[A]^2}{b + c[A]}$$

Bollimer

Properties

國立高雄大學九十七學年度研究所碩士班招生考試試題

科目:綜合化學(II)

考試時間:100分鐘

系所:應用化學系碩士班

本科原始成績:100分

是否使用計算機:是

(a) Proposed the reaction mechanism of the reaction. (b) Derive the rate equation at low-pressure and high-pressure limits. (3, 2%)

- 10. Calculate the half-life $(t_{1/2})$ of a reaction, $A \rightarrow P$, with an initial reactant concentration of $[A]_0$:
 - (a) A zeroth-order reaction, rate constant = k^0 .
 - (b) A second-order reaction, rate constant = k^{I} .
 - (c) A second-order reaction, rate constant = k^{II} .

(2, 1, 2%)

Part II (analytical chemistry)

- 1. (3 points each) Explain the difference between
 - a systematic error and random error
 - b sensitivity and detection limit
 - c activity and ionic strength
 - d Faradaic current and charging current
 - e \cdot capacity factor (k) and resolution (R) in chromatogram
- 2. Describe how to prepare an aqueous solution with pH 3.76 by mixing acetic acid ($pK_a = 4.76$) with sodium acetate. (5 points)
- 3. A solution containing 0.040 M HA and 0.020 M HB gave chromatogram peak areas of A_{HA} = 400 and A_{HB} = 350. To analyze an unknown, 10 mL of 0.200 M HB was added to 10.0 mL of unknown, and the mixture was diluted to 25.0 mL in a volumetric flask. This mixture gave the chromatogram with A_{HA} = 450 and A_{HB} = 575. Find the concentration of HA in the unknown. (5 points)
- 4. Why the pH is not 7.00 at equivalence point in the titration of weak acid with strong base? (5 points)
- 5. Describe the advantage for using three-electrode cell over two-electrode cell on electrolysis. (5 points)
- 6. Describe how to determine the measurement of a spectrometer is absorption or emission on the basis of the alignment among light source, sample cell, and detector. (5 points)
- 7. You have been request to determine the amount of CH₃CH₂CH₂CH₂Cl and (CH₃)₃CCl in a solution by chromatographic method. Describe which method you are going to use, include the detector equipped with the instrument. (5 points)
- 8. Describe three common types of noise in electric instruments. (5 points)