國立高雄大學九十七學年度研究所碩士班招生考試試題

系所: 科目:綜合化學(I)

應用化學系碩士班 是否使用計算機:是

考試時間:100分鐘 本科原始成績:100分

PART I: Organic Chemistry; Total = 50 points

1. Predict the major organic product formed in each following reaction. (10 pts)

b)
$$O \longrightarrow OCH_3 \xrightarrow{?} HO \longrightarrow OCH_3$$

d)
$$N-CH_3 \xrightarrow{?} N-CH_3$$

2. Give some proper reagents that bring the following reaction occurrence. (10 pts)

a)
$$\longrightarrow$$
 N H₂SO₄

d)
$$\bigoplus_{\substack{\Theta \\ N > CH_2}}^{CH_3} + H_2C = CH_2 \xrightarrow{\Delta} ?$$

e)
$$H_3CH$$
 H_2O H_2O

3. Treatment of both α - and β -bromoketones with base results in loss of HBr to form α,β-unsaturated ketones. However, the former react much more slowly and require much stronger bases. Account for this differencein reactivity by providing a complete analysis of both reaction mechanisms. (6 pts)

4. β-Ocimene is a natural product with a pleasant odor. Based on the information below, deduce the structure of β -ocimene.(4 pts)

$$\begin{array}{c|c} \text{β-Ocimene} & & & \\ \text{$(C_{10}H_{16})$} & & & \\ \hline & 1. \text{ O_3} & & \\ \hline & 2. \text{$(CH_3)_2S$} & & \\ \hline \end{array} \begin{array}{c} \text{CH_2O} & + & \\ \text{H_3C} & & \\ \hline \end{array} \begin{array}{c} \text{CH_3} & + \\ \text{CHO} & \\ \end{array} \begin{array}{c} \text{CHO} \\ \text{CHO} \end{array}$$

國立高雄大學九十七學年度研究所碩士班招生考試試題

科目:綜合化學(I)

系所:

考試時間:100分鐘

應用化學系碩士班

是否使用計算機:是

本科原始成績:100分

5. Upon treatment with acid, 2,2-dimethylcyclohexanol undergoes dehydration to form 3,3-dimethylcyclohexene and another alkene that exhibits only four unique signals in the ¹³C NMR spectrum yet has a mass of 110, corresponding to the formula C₈H₁₄. Assign a structure to this product, and account for its formation with a detailed reaction mechanism. (4 pts)

6. provide exact intermediates A-E for the following reactions (10 pts)

7. Suggest a convenient method for carrying out the following syntheses. (6 pts)

a)
$$\downarrow$$
 OH + \downarrow OCH₃ \downarrow HCI \downarrow HO OH

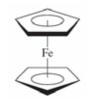
<u>PART II</u>: Inorganic Chemistry; Total = 50 points

- 1. Provide a concise but thorough explanation of the following (10 points)
 - (a) Trans effect
- (b) Valence bond theory
- (c) n-type semiconductor
- (d) 18 electrons rule
- 2. (a) How many spherical nodes dose $4d_{x^2-y^2}$ orbital have? (2 points)
 - (b) How many angular nodes dose $4d_{x^2-y^2}$ orbital have? (2 points)

國立高雄大學九十七學年度研究所碩士班招生考試試題

科目:綜合化學(I)

系所:


考試時間:100分鐘

應用化學系碩士班 是否使用計算機:是 本科原始成績:100分

3. Determine the point groups for (9 points)

- (a) Cyclohexane (chair conformation)
- (b) BrF₅
- (c) $Fe(C_5H_5)_2$ (staggered)

4. The d^2 ions CrO_4^{4-} , MnO_4^{3-} , FeO_4^{2-} , and RuO_4^{2-} have been reported. (9 points)

(a) Which of these has the largest value of Δ_t ? The smallest? Explain briefly.

(b) Of the first three, which ion has the shortest metal-oxygen bond distance? Explain briefly.

(c) The charge-transfer transitions for the first three complexes occur at 43000, 33000, and 21000 cm⁻¹, respectively. Are these more likely to be ligand to metal or metal to ligand charge-transfer transitions? Explain briefly.

5. $Mn_2(CO)_{10}$ and $Re_2(CO)_{10}$ have D_{4d} symmetry. How many IR-active carbonyl stretching bands would you predict for these compounds? (10 points)

D_{4d}	E	$2S_8$	$2C_4$	$2S_8^3$	C_2	$4C_2'$	$4\sigma_d$		
A_1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_2	1	1	1	1	1	-1	-1	R _z	
B_1	1	-1	1	-1	1	1	-1		
B ₂ E ₁ E ₂	1	-1	1	-1	1	-1	1	z	
E_1	2	$\sqrt{2}$	0	$-\sqrt{2}$	-2	0	0	(x, y)	
E_2	2	0	-2	0	2	0	0		(x^2-y^2,xy)
E_3	2	$-\sqrt{2}$	0	$\sqrt{2}$	-2	0	0	(R_x, R_y)	(xz, yz)

6. Of the donor-acceptor complexes (CH₃)₃N-SO₃ and H₃N-SO₃ in the gas phase (8 points)

(a) Which has the longer N-S bond? Explain briefly.

(b) Which has the larger N-S-O angle? Explain briefly.