國立高雄大學九十七學年度研究所碩士班招生考試試題

科目:數理統計考試時間:100分鐘

系所:統計學研究所碩士班

本科原始成績:100 分

是否使用計算機:否

- 1. Let X_1, \ldots, X_n be a random sample and n > 3. Let \bar{X} and S^2 denote the corresponding sample mean and sample variance respectively.
 - (a) Show that

$$S^{2} = \frac{1}{2n(n-1)} \sum_{i=1}^{n} \sum_{j=1}^{n} (X_{i} - X_{j})^{2}. (10\%)$$

(b) Assume that the X_i 's have a finite fourth moment, and denote $\theta_1 = E(X_i)$, $\theta_i = E(X_i - \theta_1)^j$, j = 2, 3, 4. Then show that

$$Var(S^2) = \frac{1}{n}(\theta_4 - \frac{n-3}{n-1}\theta_2^2).$$
 (12 %)

2. Let X_1, \ldots, X_n be a random sample from a population with pdf

$$f_X(x) = \begin{cases} 1/\theta, & \text{if } 0 < x < \theta; \\ 0, & \text{otherwise.} \end{cases}$$

Let $X_{(1)} < \ldots < X_{(n)}$ be the order statistics. Show that $X_{(1)}/X_{(n)}$ and $X_{(n)}$ are independent random variables. (10 %)

- 3. Let X_1, \ldots, X_n be a random sample from the pdf $f(x|\mu) = \exp(-(x \mu))$, where $-\infty < \mu < x < \infty$.
 - (a) Show that $X_{(1)} = \min_i X_i$ is a complete sufficient statistic. (10 %)
 - (b) Prove that $X_{(1)}$ and sample variance, S^2 , are independent. (12 %)
- 4. Let X_1, \ldots, X_n be i.i.d. $N(\theta, 1)$. Show that the best unbiased estimator of θ^2 is $\tilde{X}^2 1/n$, where \tilde{X} is the sample variance of X_1, \ldots, X_n . (10 %)
- 5. Let $X_1, ..., X_n$ be a random sample from the pmf $f(x|p) = p(1-p)^{x-1}$, x = 1, 2, 3, ..., and $0 . Find the MLE of <math>\sqrt{p(1-p)}$. (10 %)
- 6. Define S_X^2 and S_Y^2 are the two sample variance based on two independent samples of size n and m from $N(\mu_X, \sigma_X^2)$ and $N(\mu_Y, \sigma_Y^2)$ respectively. Let s_X^2 and s_Y^2 are the observed values of S_X^2 and S_Y^2 . Find a $100(1-\alpha)\%$ confidence interval for σ_X^2/σ_Y^2 based on s_X^2 and s_Y^2 . (12 %)
- 7. Let $X \sim Bionomial(2,\theta)$, $0 < \theta < 1$. Consider testing $H_0: \theta = 1/2$ versus $H_1: \theta = 3/4$. Find the UMP level $\alpha = 1/4$ test. (14 %)