國立高雄大學九十七學年度研究所碩士班招生考試試題

科目:

系所:

化工熱力學與化學反應工程

化學工程及材料工程學系碩士班甲組 是否使用計算機:是

考試時間:100分鐘 本科原始成績:100分

An engineer claims to have invented a steady-flow device that will take air at 4 bar and 20°C and separate it into two streams of equal mass, one at 1 bar and -20°C and the second at 1 bar and 60°C. Furthermore, the inventor states that his device operates adiabatically and does not require (or produce) work. Is such a device possible? (Air can be assumed to be an ideal gas with a constant heat capacity of $C_p = 29.3 \text{ J/mol K.}$) (12%)

The enthalpy of a binary liquid system of species 1 and 2 at fixed temperature and pressure is represented by the equation:

$$H = 400x_1 + 600x_2 + x_1x_2(40x_1 + 20x_2)$$

where H is in J mol⁻¹. Determine expressions for $\overline{H_1}$ and $\overline{H_2}$ as functions of x_1 , numerical values for the pure species enthalpies H_1 and H_2 , and numerical values for the partial enthalpies at infinite dilution $\overline{H}_{1}^{\infty}$ and $\overline{H}_{2}^{\infty}$. (24%)

- 3. An ideal gas undergoes the following sequence of mechanically reversible process in a closed system:
- (a) From an initial state of 70°C and 1 bar, it is compressed adiabatically to 150°C.
- (b) It is then cooled from 150°C to 70°C at constant pressure.
- (c) Finally, it is expanded isothermally to its original state. Calculate W, Q, Δ U, and Δ H for each of the three processes and for the entire cycle. Take C_v = (3/2)R and $C_p = (5/2)R$. (R=8.314 J mol⁻¹ K⁻¹) (16%)
- Substance A reacts according to second order kinetics and conversion is 95% from a single flow reactor. We buy a second unit identical to the first. For the same conversion, by how much is the capacity increased if we operate these two units in parallel or in series?
 - (a) The reactors are both plug flow. (12%)
 - (b) The reactors are both CSTR. (12%)
- 5. The isomerization of butane

$$n - C_4H_{10} \Leftrightarrow i ? C_4H_{10}$$

was carried out adiabatically in the liquid phase and the data in the table were obtained.

國立高雄大學九十七學年度研究所碩士班招生考試試題

科目:

系所:

化學工程及材料工程學系碩士班甲組 是否使用計算機:是 化工熱力學與化學反應工程

考試時間:100分鐘 本科原始成績:100分

Raw data					
X	0.0	0.2	0.4	0.6	0.65
-r _A (kmol/m ³ .h)	39	53	59	38	25

Furthermore, the reactor scheme shown in the figure is used.

Calculate the volume of each of the reactors for an entering molar flow rate of n-butane of 50 kmol/hr. (24%)