國立臺灣師範大學九十七學年度碩士班考試入學招生試題

高等微積分科試題(數學系用,本試題共2頁) 製了、取序教管组注意: 1. 依次序作答,只要標明題號,不必抄題。 記計組 2. 答案必須寫在答案卷上,否則不予計分。

- 1. $(10 \, \hat{\sigma})$ If $S \subset \mathbb{R}$ and $x \in \mathbb{R}$, then x is called an accumulation point of S if every 1-ball $B(x;\delta)$ contains at least one point of S distinct from x. Prove that if a bounded subset S of \mathbb{R} contains infinitely many points, then there is at least one point in \mathbb{R} which is an accumulation point of S.
- 2. $(10\hat{\sigma})$ Prove the following version of the Intermediate Value Theorem: Let f be a continuous real-valued function on an interval [a,b] in \mathbb{R} , and assume that f(a) f(b) < 0. Then there is at least one point $c \in (a,b)$ such that f(c) = 0.
- 3. (a) $(10 \, \hat{\sigma})$ Let $f:[a,b] \to \mathbb{R}$ be continuous. Show that f is uniformly continuous on [a,b].
 - (b) $(5 \ \hat{\pi})$ Define f(x) = 1/x for $x \in (0,1)$. Is f uniformly continuous on (0,1)? Prove or disprove your answer.
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x,y) = (e^{x-y} + xy + x(y-1)^4, 1 + x^2 + x^4 + (xy)^5)$$

- (a) $(8 \ \hat{\sigma})$ Show that there are neighborhoods U of (1,1) and V of (2,4) such that $f: U \to V$ is one-to-one and onto.
- (b) $(7 \, \hat{\beta})$ If $f^{-1}(u, v) = (g(u, v), h(u, v))$ is the inverse function of f from V to U, find the Jacobian matrix of f^{-1} at (2, 4).
- 5. (10 分) Suppose f is a bounded, Riemann integrable function on the interval [a, b], g is an increasing function on [a, b], and suppose $f \geq 0$. Prove that there is a point $\xi \in [a, b]$ such that

$$\int_{a}^{b} f(x)g(x) \, dx = g(a) \int_{a}^{\xi} f(x) \, dx + g(b) \int_{\xi}^{b} f(x) \, dx.$$

(背面尚有試題)

6. Consider the sequence

$$b_n = \left(1 + \frac{1}{n}\right)^{n + \frac{1}{2}}, \qquad n \in \mathbb{N}.$$

- (a) (5 $\hat{\sigma}$) Prove that this sequence $\{b_n\}$ converges to a real number L.
- (b) (10 分) Which one is larger, b_{2008} or L? Justify your answer.
- 7. (15 分) Let f(x) be a continuous function in the interval $-1 \le x \le 1$. Prove that:

$$\lim_{h\to 0^+} \int_{-1}^1 \frac{h}{h^2 + x^2} f(x) \, dx = \pi \cdot f(0).$$

8. (10 分) Let B be the closed disk $x^2 + y^2 \le 1$ on the plane. Evaluate the following double integral

$$\iint_{B} \ln \sqrt{x^2 + y^2} \ dx \ dy.$$

(試題結束)