國立臺灣師範大學九十七學年度碩士班考試入學招生試題

線性代數 科試題 (數學系用,本試題共2頁)

取為, 取序教育 1.依次序作答,只要標明題號,不必抄題。 <5→5H 注意: 2.答案必須寫在答案卷上,否則不予計分。

1. Let V be the vector space of all 2×3 matrices over a field F. Let W_I be the subspace of V which consists of all matrices of the form $\begin{vmatrix} x \\ y \end{vmatrix}$ and let W_2 be the subspace of V which consists of all matrices of the form

- (1) (7分) Find the dimensions of W_1 , W_2 , and $W_1 \cap W_2$. (You don't need to explain your answers.)
- (2) (8分) Prove that $W_1 + W_2 = V$.
- 2. (8 分) Are the following two matrices row-equivalent? Explain your answer.

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 4 & -1 & 0 \\ 2 & 5 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1 & 2 \\ -2 & 0 & -1 \\ 1 & 3 & 5 \end{bmatrix}.$$

- 3. (10 分) Let T be a linear operator on a vector space V, not necessarily finite-dimensional, and suppose $T^2 = T$. Prove that $V = \ker T \oplus \operatorname{im} T$.
- 4. (10 分) Let A be an $n \times n$ real matrix with $A^2 = A$. Prove that A is diagonalizable.
- 5. (7分) Let A be a 6×6 real matrix. Suppose the minimal polynomial for A is $p(x) = (x+1)^2(x^2+1)$. Find all the possible characteristic polynomials for A. (You don't need to explain your answers.)

6. Let

$$A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix} \in M_{n \times n}(\mathbb{R})$$

- (1)(10 分) Find the eigenvalues and the corresponding eigenvectors of A.
- (2)(5 分) Determine whether A is diagonalizable.
- 8. (10 分) Let A be an $n \times n$ matrix. Prove that dim(span(I, A, A²,...)) $\leq n$.
- 9. (5 分) State the definition of an inner product on a vector space V.
- 10. Let $\langle \cdot, \cdot \rangle$ be an inner product on \mathbb{C}^n .
 - (1)(5分) Show that there is a unique positive definite matrix $A \in M_{n \times n}(\mathbb{C})$ such that $\langle x, y \rangle = y^* A x$ for all $x, y \in \mathbb{C}^n$.
 - (2)(5 分) Let $B \in M_{n \times n}(\mathbb{C})$. The linear operator L_B is defined by $L_B(x) = Bx$ for all $x \in \mathbb{C}^n$. Is the adjoint operator of L_B with respect to the inner product $\langle \bullet, \bullet \rangle$ equal to L_B ? If not, find L_B .