國立臺北科技大學九十七學年度碩士班招生考試

系所組別:4112工業工程與管理系碩士班甲組

第二節 作業研究 試題

填	准	考	證	號	碼	

第一頁 共二頁

注意事項:

- 1. 本試題共5題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。

[本題 15 分]

1. Consider the following linear programming (minimization) tableau:

	X_1	X ₂	X ₃	X ₄	X5	Right Hand Side
Z	а	-2	0	0	0	-10
X ₃	-1	b	1	0	0	4
X4	С	-4	0	1	0	1
X ₅	d	3	0	0	1	е

Under what values of a,b,c,d,e could the following conditions occur? Give values (e.g. <0, \ge , arbitrary, etc.) for all.

- (1) The tableau is optimal.
- (2) The solution is unbounded.
- (3) The current solution is infeasible.
- (4) No feasible solutions exist.
- (5) The solution is degenerate.

[本題 15 分]

2. Consider the following linear programming(LP):

Minimize cx

s.t. Ax = b

and $x \ge 0$

For each question, answer "true" or "false" and give explanation:

- (1) If LP has a finite optimal solution, its constraint set is bounded.
- (2) During Phase 1, an artificial variable will never be chosen as the entering variable.
- (3) LP has a solution if and only if $rank(A, b) \leq rank A$.
- (4) Each iteration of the simplex procedure generates a new solution.
- (5) Each iteration of the simplex procedure generates an improved solution.

[本題 25 分]

3. Consider the following problem.

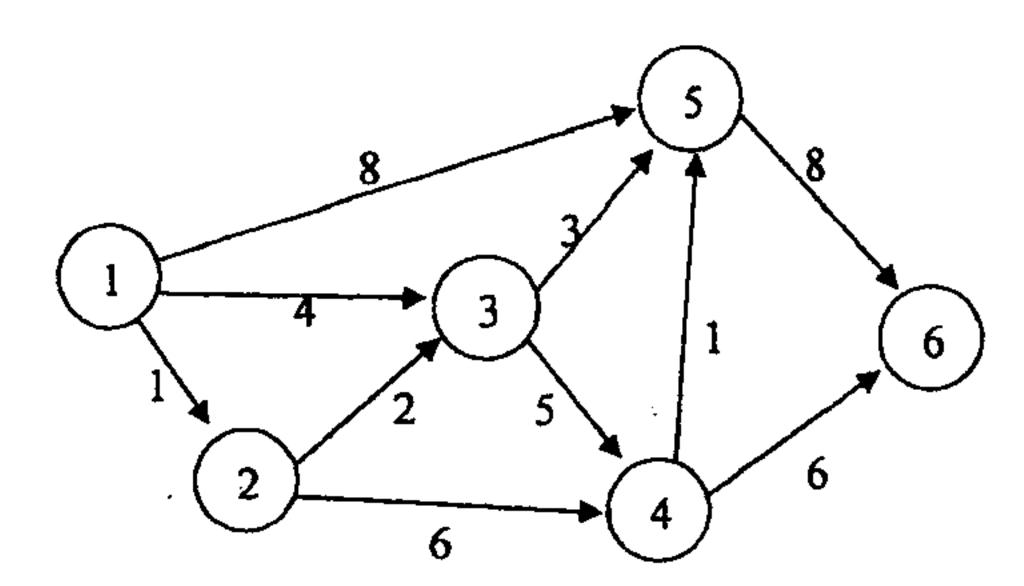
Maximize $Z = 2x_1 + 4x_2 + 3x_3$, s.t.

 $x_1 + 3x_2 + 2x_3 = 20$

 $x_1 + 5x_2 \geq 10$

and $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$.

Let \bar{x}_4 be the artificial variable for the first constraint. Let x_5 and \bar{x}_6 be the surplus variable and artificial variable, respectively, for the second constraint. You are now given the information that a portion of the final simplex tableau is as follows:


	x_1	x_2	x_3	\bar{x}_4	<i>x</i> ₅	\bar{x}_6	Right Hand Side
Z				M+2	0	M	
x_1				1	0	0	
x_5				1	1	-1	

Use the revised simplex method to find the missing numbers in the final simplex tableau. Show your calculations.

注意:背面尚有試題

[本題 25 分]

4. Consider the directed network where the number on each arc is the distance between two nodes. Use dynamic programming to find the shortest path and its distance from node 1 to node 6.

[本題 20 分]

5. Customers arrive at an ice cream store with one server according to a Poisson process at a mean rate of 30 per hour. The server has resigned. Two candidates, X (fast but expensive) and Y (slow but inexpensive), are applying for the job. Both candidates would have an exponential distribution for service times with X having a mean of one minute and Y having a mean of 1.5 minutes. Restaurant revenue per month is given by \$6,000/W where W is the expected waiting time (in minutes) of a customer in the system.

Determine the upper bound on the difference in their monthly compensations that would justify hiring X rather than Y.