系所組別: 高分子工程系碩士班乙組

科 目: 有機化學

乙組:有機化學;共12大題,總分100分;請於答案卷內依序作答。

- 1. What configuration of the products would you expect from SN₂ reaction of the optically active (R)-2-octanol with following sets of reagents? (1) (i) PBr₃/ether,
 - (ii) CH₃CH₂O'Na⁺; (2) (i) p-TosCl*/pyridine, (ii) CH₃CH₂O'Na⁺.

(*: p-toluenesulfonyl chloride) (6%)

2. Identify the reagents a-j in the following scheme: (10%)

$$CH_2OH \xrightarrow{c} O \xrightarrow{b} OH \xrightarrow{c} OH$$

$$CH_2OH \xrightarrow{c} CHO \xrightarrow{f} QH$$

$$\downarrow i$$

$$\downarrow g$$

$$NH=C \xrightarrow{j} NH_2$$

- 3. Write chemical equations of the following reactions: (you should write all steps of the reaction and any other chemical or reaction condition necessary) (15%)
 - (1) Sandmeyer reaction
 - (2) Aldol condensation reaction
 - (3) Michael reaction
 - (4) Fischer esterification reaction
 - (5) Claisen condensation reaction
- 4. Synthesize the following compounds: (In addition to the starting materials, you can use any chemicals needed) (9%)
 - (1) from C₆H₆ to m-Cl-C₆H₄COOH
 - (2) from CH₃CH₂OH to CH₃CH₂CH₂CHO
 - (3) from (CH₃)₃C-OH to (CH₃)₃C-O-CH₂CH₃

1所組別: 高分子工程系碩士班乙組

目: 有機化學

5. Name the following compounds: (6%)

6. Refer to the following equation to answer the questions below. (6%)

$$pKa = 18$$

$$(CH_3)_3C - \ddot{O} - H + K^{\oplus \odot}\dot{O}H \longrightarrow (CH_3)_3C - \ddot{O} \cdot K + H_2O$$
A. B. C. D.

- (6a). Which is the strongest Brønsted-Lowry acid in the equation?
- (6b). Which is the strongest Brønsted-Lowry base in the equation?
- (6c). Will this reaction take place as written? Please explain.

7. Below are the two chair conformations of a 1,2,4-trimethylcyclohexane. Estimate the amount of 1,3-diaxial strain in each conformer and predict which conformer is most stable by calculating the energy associated with their conformation. (giving that 1,3-diaxial strain: H-CH₃: 3.8 KJ/mol, CH₃ gauche interaction: 3.8 kJ/mol) (6%)

$$CH_3$$
 CH_3
 CH_3

系所組別: 高分子工程系碩士班乙組

目: 有機化學 科

- 8. Choose the best reagent from the list below for carrying out each transformation.(12%)
 - - 2. Zn, H₃O⁺
 - b. 1. BH₃, THF
 - - 2. H₂O₂, NaOH, H₂O
 - c. CHCl₃, KOH
 - d. H₂O, H₂SO₄, heat
- g. CH₂I₂, Zn(Cu)

f. KMnO₄, acid

1. OsO₄

h. 1. Hg(OAc)₂, H₂O

2. NaHSO₃, H₂O

2. NaBH₄

8a.

8b.

CH₃

系所組別: 高分子工程系碩士班乙組

4 目: 有機化學

9. Reaction of HBr with 3-methylcyclohexene yields a mixture of four products: cisand trans-1-bromo-3-methylcyclohexane and cis- and trans-1-bromo-2-methylcyclohexane. However, the analogous reaction of HBr with 3-bromocyclohexene yields trans-1,2-dibromocyclohexane as the sole product. Draw structures of the possible intermediates, and then explain why only a single product is formed in the reaction of HBr with 3-bromocyclohexene. (4%)

10. One of the following molecules (a)~(d) is D-erythrose 4-phosphate, which has R stereochemistry at both chirality centers. (6a). Which of the structures is it? (6b). Which of the remaining structures is the enantiomer of D-erythrose 4-phosphate? (6c). and which are diastereomers? (6%)

(a)
$$H = C = O$$
 (b) $H = C = O$ (c) $H = C = O$ (d) $H = C = O$ H $= C = O$ CH₂OPO₃²⁻ CH₂OPO₃²⁻ CH₂OPO₃²⁻

系所組別: 高分子工程系碩士班乙組

科 目: 有機化學

11. Propose structures for compounds that fit the following descriptions: (12 %)

a) $C_{10}H_{14}$

¹H NMR: 7.18δ (4 H, broad singlet);

2.70 δ (4 H, quartet, J = 7 Hz);

1.20 δ (6 H, triplet, J = 7 Hz)

IR: 745cm⁻¹

 $(b)C_{10}H_{14}$

¹H NMR: 7.0 δ (4 H, broad singlet); 2.85 δ (1 H, septet, J = 8 Hz);

2.28 δ (3 H, singlet); 1.20 δ (6 H, doublet, J = 8 Hz)

IR: 825cm⁻¹

12. Propose structures for aromatic hydrocarbons that meet the following descriptions: (8%)

- a) C₁₀H₁₄; gives only one C₁₀H₁₃Cl product on substitution with chlorine
- b) C₈H₁₀; gives three C₈H₉Br products on substitution with bromine