系所組別: 高分子工程系碩士班乙組 科 目: 有機化學 ## 乙組:有機化學;共12大題,總分100分;請於答案卷內依序作答。 - 1. What configuration of the products would you expect from SN₂ reaction of the optically active (R)-2-octanol with following sets of reagents? (1) (i) PBr₃/ether, - (ii) CH₃CH₂O'Na⁺; (2) (i) p-TosCl*/pyridine, (ii) CH₃CH₂O'Na⁺. (*: p-toluenesulfonyl chloride) (6%) 2. Identify the reagents a-j in the following scheme: (10%) $$CH_2OH \xrightarrow{c} O \xrightarrow{b} OH \xrightarrow{c} OH$$ $$CH_2OH \xrightarrow{c} CHO \xrightarrow{f} QH$$ $$\downarrow i$$ $$\downarrow g$$ $$NH=C \xrightarrow{j} NH_2$$ - 3. Write chemical equations of the following reactions: (you should write all steps of the reaction and any other chemical or reaction condition necessary) (15%) - (1) Sandmeyer reaction - (2) Aldol condensation reaction - (3) Michael reaction - (4) Fischer esterification reaction - (5) Claisen condensation reaction - 4. Synthesize the following compounds: (In addition to the starting materials, you can use any chemicals needed) (9%) - (1) from C₆H₆ to m-Cl-C₆H₄COOH - (2) from CH₃CH₂OH to CH₃CH₂CH₂CHO - (3) from (CH₃)₃C-OH to (CH₃)₃C-O-CH₂CH₃ 1所組別: 高分子工程系碩士班乙組 目: 有機化學 5. Name the following compounds: (6%) 6. Refer to the following equation to answer the questions below. (6%) $$pKa = 18$$ $$(CH_3)_3C - \ddot{O} - H + K^{\oplus \odot}\dot{O}H \longrightarrow (CH_3)_3C - \ddot{O} \cdot K + H_2O$$ A. B. C. D. - (6a). Which is the strongest Brønsted-Lowry acid in the equation? - (6b). Which is the strongest Brønsted-Lowry base in the equation? - (6c). Will this reaction take place as written? Please explain. 7. Below are the two chair conformations of a 1,2,4-trimethylcyclohexane. Estimate the amount of 1,3-diaxial strain in each conformer and predict which conformer is most stable by calculating the energy associated with their conformation. (giving that 1,3-diaxial strain: H-CH₃: 3.8 KJ/mol, CH₃ gauche interaction: 3.8 kJ/mol) (6%) $$CH_3$$ CH_3 系所組別: 高分子工程系碩士班乙組 目: 有機化學 科 - 8. Choose the best reagent from the list below for carrying out each transformation.(12%) - - 2. Zn, H₃O⁺ - b. 1. BH₃, THF - - 2. H₂O₂, NaOH, H₂O - c. CHCl₃, KOH - d. H₂O, H₂SO₄, heat - g. CH₂I₂, Zn(Cu) f. KMnO₄, acid 1. OsO₄ h. 1. Hg(OAc)₂, H₂O 2. NaHSO₃, H₂O 2. NaBH₄ 8a. 8b. CH₃ 系所組別: 高分子工程系碩士班乙組 4 目: 有機化學 9. Reaction of HBr with 3-methylcyclohexene yields a mixture of four products: cisand trans-1-bromo-3-methylcyclohexane and cis- and trans-1-bromo-2-methylcyclohexane. However, the analogous reaction of HBr with 3-bromocyclohexene yields trans-1,2-dibromocyclohexane as the sole product. Draw structures of the possible intermediates, and then explain why only a single product is formed in the reaction of HBr with 3-bromocyclohexene. (4%) 10. One of the following molecules (a)~(d) is D-erythrose 4-phosphate, which has R stereochemistry at both chirality centers. (6a). Which of the structures is it? (6b). Which of the remaining structures is the enantiomer of D-erythrose 4-phosphate? (6c). and which are diastereomers? (6%) (a) $$H = C = O$$ (b) $H = C = O$ (c) $H = C = O$ (d) $H = C = O$ H $= CH₂OPO₃²⁻ CH₂OPO₃²⁻ CH₂OPO₃²⁻ 系所組別: 高分子工程系碩士班乙組 科 目: 有機化學 11. Propose structures for compounds that fit the following descriptions: (12 %) a) $C_{10}H_{14}$ ¹H NMR: 7.18δ (4 H, broad singlet); 2.70 δ (4 H, quartet, J = 7 Hz); 1.20 δ (6 H, triplet, J = 7 Hz) IR: 745cm⁻¹ $(b)C_{10}H_{14}$ ¹H NMR: 7.0 δ (4 H, broad singlet); 2.85 δ (1 H, septet, J = 8 Hz); 2.28 δ (3 H, singlet); 1.20 δ (6 H, doublet, J = 8 Hz) IR: 825cm⁻¹ 12. Propose structures for aromatic hydrocarbons that meet the following descriptions: (8%) - a) C₁₀H₁₄; gives only one C₁₀H₁₃Cl product on substitution with chlorine - b) C₈H₁₀; gives three C₈H₉Br products on substitution with bromine