國立高雄第一科技大學 97 學年度 碩士班 招生考試 試題紙

組 別:電腦組

系所別:電腦與通訊工程系

考科代碼:2122 考 科: 計算機概論

注意事項:

1、本科目不可使用本校提供之電子計算機。

2、請於<u>答案卷上規定之範圍作答</u>, 違者該題不予計分。

1. Show that the following statements are correct:

(1) If
$$f(n) = a_m n^m + ... + a_1 n + a_0$$
, then $f(n) = O(n^m)$. (4%)

(2)
$$\sum_{k=1}^{n} \frac{1}{k} = \Theta(\ln n) \cdot (4\%)$$

- 2. Answer the following questions about stacks and queues:
 - (1) Show how to implement a stack using two queues. (4%)
 - (2) Show how to implement a queue using two stacks. (4%)
- 3. Given an adjacency list shown below. The value field in element of the adjacency list contains edge weight of a graph.

- (1) Draw the corresponding graph. (4%)
- (2) Please find a topological sort of the given graph. (4%)
- (3) Apply Dijkstra's shortest-path algorithm to determine the shortest paths from vertex A to every other vertex in the graph. Show your work step by step. (4%)

第1頁,合計3頁【尚有試題】

- 4. Suppose you are given the following numbers:
 - 15, 22, 13, 27, 12, 10, 20, 25
 - (1) Construct a binary search tree for these numbers presented given order. Please draw the resulting tree T_b . (4%)
 - (2) Represent the completed threaded version of T_b . (4%)
 - (3) Delete 22 from T_b and show the resulting tree. (4%)
- 5. An unsorted sequence 15, 22, 13, 27, 12, 10, 20, 25 is stored in an array and to be sorted in increasing order.
 - (1) Demonstrate the contents of the array in the first pass of radix sort (with radix=10). (4%)
 - (2) Demonstrate the contents of the array in the first pass of quick sort (use first item as the pivot). (4%)
 - (3) Demonstrate the contents of the array in the first pass of heap sort. (4%)
- 6. Answer the following questions about CPU-scheduling algorithms:
 - (1) What is starvation? Which CPU-scheduling algorithm has a possibility of starvation? (4%)
 - (2) What are the advantages and disadvantages of the FCFS (First-Come-First-Served) scheduling algorithm? (4%)
 - (3) Why the performance of the RR (Round Robin) scheduling algorithm depends heavily on the size of the time slice? (4%)
- 7. What are the differences between paging and segmentation? Please detail your answer. (8%)
- 8. There are three popular methods to allocate disk blocks for a file: contiguous, linked, and indexed. Give advantages and disadvantages of each method. (8%)
- 9. Consider the following snapshot of a system:

	Allocation					Max				Available			
•	A	В	С	D	A	В	C	D	A	В	С	D	
P_I	l	2	1	0	1	3	2	2	1	X	1	2	
P_2	5	1	3	0	7	7	3	0					
P_3	2	1	4	2	3	6	6	6					
P_4	5	3	0	2	5	5	6	5					
P_5	1	4	2	0	5	4	3	1					

- (1) Let X be the smallest value in which the system state is safe. What is X? (4%)
- (2) If a request from process P_2 arrives for (1, 2, 1, 1), can the request be granted immediately? Explain your answer. (4%)
- (3) If a request from process P_3 arrives for (0, 1, 0, 2), can the request be granted immediately? Explain your answer. (4%)

第2頁,合計3頁【尚有試題】

10. Consider the following solution for the producer/consumer problem:

```
const int sizeofbuffer = ...; /* buffer size */
                                              void consumer(){
                                                   while(true){
semaphore s = 1;
                                                        wait(n);
semaphore n = 0;
semaphore e = sizeofbuffer;
                                                        wait(s);
void producer(){
                                                        take();
    while(true){
                                                        signal(s);
                                                        signal(e);
         produce();
                                                        consume();
         wait(s);
         wait(e);
         append();
                                              void main(){
         signal(s);
                                                   parbegin(producer, consumer);
         signal(n);
```

Determine whether it is a correct solution to the producer/consumer problem. Please detail your reasons. (8%)