國立高雄應用科技大學 九十七學年度碩士班招生考試 電子工程系(丙組)

計算機結構

試題 共3頁第1頁

注意:a. 本試題共 5 題, 每題 20 分, 共 100 分。

- b. 作答時不必抄題,各試題答案必須依題號順序寫在試卷指定的答案欄。
- C. 考生作答前請詳閱答案卷之考生注意事項。
- 1. (20%) For the following phase-clock generator with two input of clock1 and clock2, draw the waveforms of PH1, PH2, PH1C and PH2C if the delay through NOT, NOR and NAND gates can be ignored.

- 2. (20%) Consider the combinatorial circuits for adder and multiplier.
 - (a) A half-full adder (HA) can perform addition of two bits but a full adder (FA) can perform addition of three bits. Draw a full adder using half-full adders and some logic gates, where the block circuit of a half-full adder is shown below.

(b) If a 3×3 Wallace-tree multiplier using a 5-bit carry-save adder and 6-bit parallel adder (i.e., ripple carry adder) is constructed as follows, where a multiplication of (111) × (110) is shown below.

According to the above construction, construct a 4×4 Wallace-tree multiplier using one 7-bit and one 8-bit carry-save adders and one 9-bit parallel adder for a multiplication of (1011) \times (1110).

3. (20%) For the pipeline in computer arithmetic, consider the following snipper of 1 code:

For
$$I = 1$$
 TO 200 DO $\{A[i] = (B[i] * C[i]) QQQQ$ (01110)

Assume that each operation, multiplication and addition, requires 15 ns to complete. A non-pipelined uniprocessor takes 30 ns to calculate A[i], and 6000 ns to execute the code. A pipelined unit could break this computation into two stages in which the first stage performs the multiplication and the second stage performs staged at latch needs 3 ns to load data.

(a) Draw the above two-stage pipeline scheme (including the latches).

(b) Calculate the time required to execute the above code (including the latching (10010))

time).

le (including the latching (10010)

6-bit
Parallel Cin
Adder

- 4. (20%) Consider some instructions for the 8085 microprocessor in the following table.
 - (a) What is the function provided by the following program fragment?
 - (b) After executing the following program fragment if using n = 5, find

A = ? B = ? Z (zero-flag) = ? <math>xx = ?

Instruction	Operation
NOP	No operation
LDA addr	A = M[addr]
STA addr	M[addr] = A
MOV r1, r2	r1 = r2
ADD r	A = A + r
SUB r	A = A - r
INR r	r=r+1
DCR r	r=r-1
ORA r	$A = A \lor r$
XRA r	$A = A \oplus r$
JUMP addr	GOTO addr
JNZ addr	IF (Z=0) THEN GOTO addr (where Z is zero-flag)

LDA n
ADD A
MOV B, A
L1: XRA A
ADD B
DCR B
JNZ L1
STA xx

- 5. (20%) (a) Assume a microprocessor has 20-bit address bus and 16-bit data bus. The memory utilization involves 64K bytes for I/O device, 64K bytes for EPROM device, and others for SRAM. How many SRAM devices of size 64Kx8 are required in such a microprocessor?
 - (b) For four storage devices in a computer: cache memory, register, main memory, and hard disk, compare the speed of these four storage devices.
 - (c) For operations in stack, write 4 operations of PUSH and/or POP for executing the exchange of registers A and B contents.
 - (d) Consider a multiplication using ROM table, what is the size of the ROM for realizing the multiplication of two 4-bit operands?