國立高雄應用科技大學 九十七學年度碩士班招生考試 電子工程系(乙組) ## 電子學 試題 共2頁第1頁 注意:a. 本試題共5題,每題20分,共100分。 - b. 作答時不必抄題。 - c. 考生作答前請詳閱答案卷之考生注意事項。 - 1. As shown in Figure 1, $V_{CC}=24\,(v)$, $R_{C}=10k\Omega$, $R_{e}=270\Omega$, $\beta=45$ for silicon transistor, $V_{CE}=5\,(v)$, $V_{BE}=0.6\,(v)$, ignore the inverses saturation current, find the value of R. Figure 1 - 2. A three-pole feedback Amp has a dc gain without feedback of -10^3 . All three open-loop poles are at f = 1MHz. - $\langle a \rangle$ What is the maximum value of β for which amplifier is stable? -
 Assume that one of the poles is shifted to $f_1 = 200kHz$, using the value of β found in part <a>, what is the gain margin of the modified circuit? 3. As shown in figure 3, $R=2(k\Omega)$, $R_2=2(k\Omega)$, $R_1=1(k\Omega)$, $V_2=1$ (V), $V_1=0.5$ (V), find the output voltage V_o . 4. Given the Wien Bridge Oscillator in Figure 4, find the oscillating frequency and $\frac{R_1}{R_2}$. Figure 4 5. Given the circuits in Figure 5.1, Figure 5.2, and Figure 5.3, A, B, C, and D are inputs, and V_0 is the output. Find the truth tables of these three circuits.