
國立高雄應用科技大學 九十七學年度碩士班招生考試 化學工程與材料工程系

物理化學

試題 共2頁第1頁

注意:a. 本試題共 8 題, 每題 分, 共 100 分。

b. 作答時不必抄題。

c. 考生作答前請詳閱答案卷之考生注意事項。

Given: $R = 8.314 \text{ J K}^{-1} \text{mol}^{-1} = 0.08314 \text{ L bar K}^{-1} \text{mol}^{-1} = 0.08206 \text{ L atm K}^{-1} \text{mol}^{-1}$, 1 atm = 1.013 bar, 1 bar = 10^5 Pa .

- 1. An ideal solution is made from 5 mol of benzene and 3.25 mol of toluene. Calculate ΔG_{mixing} and ΔS_{mixing} at 298 K and 1 bar pressure. Is mixing a spontaneous process? (10%)
- 2. Calculate E^{o} (standard electrode potential) for the process

$$Cu^+ + e^- \rightarrow Cu$$

making use of the following E^{o} values:

(1)
$$Cu^{2+} + e^{-} \rightarrow Cu^{+}$$
 $E_1^{\circ} = 0.153 \text{ V}$

(2)
$$Cu^{2+} + 2e^{-} \rightarrow Cu$$
 $E_2^{\circ} = 0.337 \text{ V}$ (10%)

3. Nitrogen trioxide dissociates according to the reaction

$$N_2O_{3(g)} = NO_{2(g)} + NO_{(g)}$$

When one mole of $N_2O_{3(g)}$ is held at 25 °C and 1 bar total pressure until equilibrium is reached, the extent of reaction is 0.30. What is $\Delta_r G^o$ (standard reaction Gibbs energy) for this reaction at 25 °C. (10%)

4. An ideal gas is allowed to expand reversibly and isothermally (25°C) from a pressure of 1 bar to a pressure of 0.1 bar. (a) What is the change in molar Gibbs energy? (b) What would be the change in molar Gibbs energy if the process occurred irreversibly? (10%)

5. Show that the Clausius-Clapeyron equation for vaporization and sublimation can be expressed by

$$\ln \frac{P_2}{P_1} = \frac{\Delta_{vap} H(T_2 - T_1)}{RT_1T_2}.$$

Where $\Delta_{\text{vap}}H$ is the heat of vaporization, P_2 and P_1 are the vapor pressures at temperatures T_2 and T_1 , respectively. (15%)

- 6. Find the equations for the work of a reversible, isothermal compression of 1 mol of gas in a piston/cylinder assembly from V_1 to V_2 if the molar volume and pressure of the gas is given by (a) V = RT/P, (b) V = (RT/P) + b, and (c) $P = RT/(V B) a/V^2$, where a, b, and R are positive constants. (15%)
- 7. Set up the rate expressions for the following mechanism:

$$A \stackrel{k_1}{\rightleftharpoons} B \qquad B + C \stackrel{k_3}{\longrightarrow} D$$

If the concentration of B is small compared with the concentrations of A, C, and D, the steady-state approximation may used to derive the rate law. Show that this reaction may follow the first-order equation at high pressures and the second-order equation at low pressures. (15%)

8. One mol of an ideal gas is compressed adiabatically in a piston/cylinder device from 2 bar and 25 °C to 7 bar. The process is irreversible and requires 35% more work than a reversible, adiabatic compression from the same initial state to the same final pressure. What is the entropy change of the gas? C_p = 29.1 J mol⁻¹K⁻¹, C_v = 20.8 J mol⁻¹K⁻¹.