

## 國立 雲林科技大學 97 學年度碩士班入學招生考試問題

系所:電機系 科目:電子學

1. In the circuit in Fig.1 with transistor parameters  $\beta = 180$  and  $V_{\lambda} = \infty$ , design the bias resistors  $R_1$  and  $R_2$  to achieve maximum symmetrical swing in the output voltage and to maintain a bias-stable circuit. The total instantaneous C-E voltage is to remain in the range  $0.5 \le v_{CE} \le 4.5 \text{ V}$  and the total instantaneous collector current is to be  $i_C \ge 025 \,\text{mA}$ .  $(R_1 // R_2 = 1.81 k\Omega)$  (25%)



2. For the circuit shown in Fig.2, the transistor parameters are:  $I_{DSS} = 6mA$ ,  $|V_p|=2V$ , and  $\lambda=0$ . (a) Calculate the quiescent drain current and source-to-drain voltage of Q1 (10%) (b) Derive the expression of the overall small-signal voltage gain. (15%)





系所: 電機系 科目: 電子學

3. For the MOSFET circuit shown in Fig. 3, the transistor parameters are :  $\frac{1}{2}\mu_n C_{\infty} \frac{W}{L} = 1 \text{mA/V}^2$ ,

$$V_{TN}=1 \text{ V}, \lambda=0, C_{gs}=2 \text{ pF}, C_{gd}=0.5 \text{ pF}.$$

- (a) Calculate  $I_D$ ,  $g_m$ . (5%)
- (b) Draw the simplified high-frequency equivalent circuit. (5%)
- (c) Find the midband voltage gain. (5%)
- (d) Calculate the equivalent Miller Capacitance. (5%)
- (e) Determine the upper 3dB frequency for the small-signal voltage gain. (5%)



- 4. Figure 4 shows a basic two-transistor pnp current source. The transistor parameters are:  $\beta = 50$ ,  $V_{EB}(\text{on}) = 0.6\text{V}$ , and  $V_A = 50\text{V}$ . The transistor value of  $R_I$  is designed at 9K $\Omega$ . Determine  $I_O$  for (a)  $V_{EC2} = 0.6\text{V}$ , (b)  $V_{EC2} = 2\text{V}$ . (10%)
- 5. Consider a four pole feedback loop system with a loop gain given by

$$T(f) = \frac{\beta(10^4)}{\left(1 + j\frac{f}{10^6}\right)\left(1 + j\frac{f}{10^7}\right)\left(1 + j\frac{f}{10^8}\right)\left(1 + j\frac{f}{10^9}\right)}$$

Determine the value of  $\beta$  and the frequency that produces a phase margin of 45 degrees. (15%)