

系所: 電子系

科目:電子學

1. Assuming the op amp to be ideal, derive an expression for the closed-loop gain v_{out}/v_{in} of the circuit shown in Fig. P1. (15%)

Fig. P1

- 2. For the circuit in Fig. P2, resistors R_I to R_5 are set to be 2 K Ω .
 - a. find the equivalent resistance to ground, R_{eq} , (5%)
 - b. find the equivalent resistance R_{eq} , when R_4 reduced to 1.8 K Ω . (10%)

Fig. P2

3. Consider a peak rectifier fed by a 120 Hz sinusoid having a peak value $V_p = 3.3$ V. Let the load resistance R = 100 K Ω . Find the value of the capacitance C that will result in a peak-to-peak ripple of 0.1 V. (20%)

國立雲林科技大學。

97學年度碩士班入學招生考試試題

系所:電子系

科目:電子學

4. Write down the small-signal voltage gain, Fig. P4. (10%)

- 5. An amplifier is shown in Fig. P5. Neglect the channel-length modulation and body effect of the transistors. The output impedance of M2 is much less than R_F. Find
 - (a) low-frequency closed-loop gain. (10%)
 - (b) closed-loop input impedance at low frequency. (10%)

Fig. P5

6. For the circuit shown in Fig. P6, $\mu_n C_{ox} = 50 \mu A/V^2$, $\lambda = 0V^{-1}$, $(\frac{W}{L})_{M1} = 40$,

 $I_{bias} = 200 \mu A$, $\gamma = 0.4 V^{1/2}$, $|2\phi_F| = 0.7 V$, $V_{DD} = 5 V$, and $V_{t_0} = 0.6 V$. λ is the channel-length modulation coefficient. γ is the body effect coefficient.

- (a) Calculate V_{out} for $V_{in} = 1.2V$. (10%)
- (b) If I_{bias} is to be implemented by an NMOS transistor, find its minimum value $(\frac{W}{I_{c}})$ such that the NMOS transistor remains in saturation. (10%)

