

系所: 通訊所

科目:通信系統

- 1. (15%) In a DSB-SC modulation system, the carrier is $c(t) = A_c \cos(2\pi f_c t)$, the message signal is $m(t) = \text{sinc}(t) + \text{sinc}^2(t)$.
 - (a) (10%) Find the Fourier transformation of the modulated signal s(t).
 - (b) (5%) Determine the bandwidth of the transmitted signal.
- 2. (20%) The IF frequency in an AM radio is $f_{\rm IF} = 455\,\rm kHz$: Assume the desired signal has a carrier frequency of 600 kHz.
 - (a) (8%) Find the LO frequency and the image frequency of the desired signal
 - (b) (12%) Draw a block diagram of a superheterodyne receiver and explain how it can remove the image signal.
- 3. (20%)A sinusoidal signal $m(t) = 2\cos(2\pi 10^4 t)$ is frequency modulated with carrier frequency $f_c = 100$ MHz. Assume the frequency sensitivity of the modulator is $k_f = 30 \, \text{kHz/V}$.
 - (a) (8%) Use Carson's rule to find the transmission bandwidth of the FM signal.
 - (b) (6%) How will the transmission bandwidth change if the carrier frequency is increased?
 - (c) (6%) If the message signal is replaced by $m(t) = 1 + 2\cos(2\pi 10^4 t)$, find the transmission bandwidth.

新國立 雲 林 科 技 大 學 97 學年度碩士班入學招生考試試題

系所: 通訊所 科目: 通信系統

4. (20%) Consider the three functions $\phi_1(t)$, $\phi_2(t)$ and $\phi_3(t)$ shown in Figure 1.

Figure 1

- (a) (8%) Determine whether these three functions are orthogonal to each other over the interval [0, 4].
- (b) (4%) Determine whether these three functions can form a set of orthonormal basis functions?
- (c) (8%) Assume a function x(t) is defined as below. Express x(t) as the linear combination of $\phi_1(t)$, $\phi_2(t)$ and $\phi_3(t)$.

$$x(t) = \begin{cases} 1, & 0 \le t \le 1 \\ 2, & 1 \le t \le 2 \\ 0, & 2 \le t \le 3 \end{cases}$$

$$1, & 3 \le t \le 4$$

- 5. (25%) Consider a discrete memoryless source with source alphabet $S = \{s_1, s_2, s_3, s_4, s_5, s_6, \}$ with respective probabilities $\{0.3, 0.2, 0.2, 0.1, 0.1, 0.1\}$.
 - (a) (8%) Calculate the entropy of the source.
 - (b) (4%) Calculate the entropy of the second-order extension of the source.
 - (c) (7%) Construct the Huffman code for this source.
 - (d) (6%) Evaluate the average codeword length and the efficiency of the Huffman code.