

國立 雲林科技大學 97 學年度碩士班入學招生考試試題

系所: 財金系、企管系

科目: 微積分

1. Evaluate the limit, if it exists:

(a)
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right)$$
. (5%) (b) $\lim_{x\to 0^+} \frac{\int_0^{\sqrt{x}} \sin (t^2) dt}{\sin (x^{\frac{3}{2}})}$. (5%)

2. Find the equation of tangent to the curve of the graph of

$$8(x^2 + y^2)^2 = 100(x^2 - y^2)$$
 at the point $P(3,-1)$. (10%)

3. Evaluate the surface integral $\iint_G y^2 z^2 dS$, where G is the part of the cone

$$z = \sqrt{x^2 + y^2}$$
 between the planes $z = 1$ and $z = 2$. (10%)

- 4. A manufacturer of model airplane engines finds that it takes L units of labor and C units of capital to produce $f(L,C) = \beta + \frac{2}{3} \ln L + \frac{1}{3} \ln C$ units of the product. If a unit of labor cost \$100 and a unit of capital costs \$200 and \$150,000 is budgeted for production, determine how many units should be expended on labor and how many units should be expended on capital in order to maximize production. (10%)
- 5. Determine the radius of convergence and the interval of convergence of $\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1}$. Moreover, find the sum of $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$. (10%)

6. Evaluate
$$\lim_{n\to\infty} \left\{ \frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{n+n} \right\}$$
 (10%)

7. Find a polynomial f of lowest possible degree such that

$$f(x_1) = a_1$$
, $f(x_2) = a_2$, $f'(x_1) = b_1$, $f'(x_2) = b_2$, where $x_1 \neq x_2$, and a_1 , a_2 , b_1 , and b_2 are given real numbers. (10%)

8. The following functions F and G are defined for all real x by the equations given. Give the domain of composite function $G \circ F$ and a formula for

$$(G \circ F)(x)$$
. $F(x) = x + 5$, $G(x) = \frac{|x|}{x}$, if $x \neq 0$, $G(0) = 1$. (10%)

9. Let $f:S \to T$ be a function. If A and B are arbitrary subsets of S, prove that

$$f(A \cup B) = f(A) \cup f(B)$$
 and $f(A \cap B) \subseteq f(A) \cap f(B)$. (10%)

10. Prove that
$$\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{4}$$
. (10%)