國立雲林科技大學

97 學年度碩士班入學招生考試試題

系所:工管所、運筹所

科目:微積分

注意:請按照題號及子題號順序作答;不按題號順序作答不以計分。第一題到第八題每題5分;第九題到第十八題每題6分。

- 1. Consider the function $y = x^4 2x^3$ for x between -1 and 3. Which one of the following statements is true?
 - (a) There is a global maximum at $(\frac{3}{2}, -\frac{27}{16})$.
 - (b) There is a local maximum at (3, 27).
 - (c) There is a stationary point of inflection at (0,0).
 - (d) There is a global minimum at (-1,3).
 - (e) There is a local minimum at (0,0).
- 2. Which of the statements below correctly match the function with its derivative?

- (a) C is the graph of the derivative of B
 F is the graph of the derivative of C
 D is the graph of the derivative of A
 E is the graph of the derivative of D.
- (c) C is the graph of the derivative of A
 E is the graph of the derivative of C
 D is the graph of the derivative of B
 F is the graph of the derivative of D.
- (b) A is the graph of the derivative of C C is the graph of the derivative of F B is the graph of the derivative of D D is the graph of the derivative of E
- (d) C is the graph of the derivative of A
 F is the graph of the derivative of C
 D is the graph of the derivative of B
 E is the graph of the derivative of D
- 3. A function f is decreasing for $x \ge 2$ and f(2) = 20, f'(2) = -2 and f''(x) > 0 for $x \ge 2$. Which of the following is a possible value for f(4)?
 - (a) f(4)=16 (b) f(4)=18 (c) f(4)=20 (d) f(4)=22 (e) f(4)=24
- 4. Which one of the following statements is correct?
 - (a) if f(t) = 5' then $f'(t) = \frac{1}{\ln 5}5'$.
 - (b) if $f(x) = x^{-3}$ then $f'(x) = -3x^{-2}$.
 - (c) if $f(z) = \frac{1}{z} \frac{2}{z^2}$ then $f'(z) = 1 \frac{1}{z}$.
 - (d) if $y = x^3 + 3x^2 + 5$ then $\frac{dy}{dt} = 3x^2 + 6x + 5$.
 - (e) if $y = \frac{1}{\sqrt{l}}$ then $\frac{dy}{dl} = \frac{-1}{2\sqrt{l^2}}$.
- 5. Suppose $f(x, y) = x^3 e^{xy}$ Which one of the following statements is correct?
 - (a) $\frac{\partial f}{\partial x} = 3x^2e^{xy} + x^3ye^{xy}$ and $\frac{\partial f}{\partial y} = x^4e^{xy}$.
 - (b) $\frac{\partial f}{\partial x} = 3x^3 y e^{xy}$ and $\frac{\partial f}{\partial y} = 3x^3 e^{xy}$.
 - (c) $\frac{\partial f}{\partial x} = 3x^2e^{xy} + x^4e^{xy}$ and $\frac{\partial f}{\partial y} = x^3ye^{xy}$.
 - (d) $\frac{\partial f}{\partial x} = 3x^2e^{xy}$ and $\frac{\partial f}{\partial y} = x^3e^{xy}$.
 - (e) $\frac{\partial f}{\partial x} = 3x^2e^{xy} + x^2ye^{xy}$ and $\frac{\partial f}{\partial y} = x^4e^{xy}$.

國立雲林科技大學 97 學年度碩士班入學招生考試試題

系所:工管所、運籌所

科目:微積分

- Which one of the following has not been differentiated correctly?
 - (a) if $f(t) = e^{x^2+5}$ then $f'(t) = 2xe^{x^2+5}$.
 - (b) if $h(x) = \sqrt{x^2 + 5}$ then $h'(x) = \frac{x}{\sqrt{3} + 5}$.
 - (c) if $f(z) = \frac{1}{(z^3+2z+1)^2}$ then $f'(z) = \frac{3z^2+2}{(z^3+2z+1)^3}$.
 - (d) if $h(x) = (2x^4 + e^x)^3$ then $h'(x) = 3(8x^3 + e^x)(2x^4 + e^x)^2$.
 - (e) if $y = \sqrt[3]{(2x^2 + 3x + 1)^2}$ then $\frac{dy}{dt} = \frac{2(2x+3)}{3\sqrt[3]{2x^2 + 3x + 1}}$.
- Which one of the following statements is correct?
 - (a) $\lim_{x\to\infty} \frac{x^2+e^x}{x+e^x} = \infty$ (b) $\lim_{x\to 1} \frac{1-x}{e^x-e} = -e^{-1}$ (c) $\lim_{x\to 0} \frac{\sin x^2}{x} = 1$ (d) $\lim_{x\to 1} \frac{\sqrt{1-x^2}}{x-1} = -1$ (e) $\lim_{x\to 1} \frac{\ln x}{x-1} = 0$
- 8. Find $\lim_{n\to\infty} (-1)^n \left(\frac{n+1}{n}\right)$
- (a) 1 (b) -1 (c) ∞ (d) $-\infty$ (e) None of the above
- Find an expression for the area from 5 to 7 under the curve $y = x^3$ as a limit.
 - (a) $\lim_{n\to\infty} \sum_{i=1}^{n} (5+\frac{3i}{n})^3 \frac{4}{n}$.
 - (b) $\lim_{n\to\infty} \sum_{i=1}^{n} (5+\frac{4i}{n})^3 \frac{1}{n}$.
 - (c) $\lim_{n\to\infty} \sum_{i=1}^{n} (5+\frac{5i}{n})^3 \frac{3}{n}$.
 - (d) $\lim_{n\to\infty} \sum_{i=1}^{n} (5+\frac{2i}{n})^3 \frac{2}{n}$
 - (e) $\lim_{n\to\infty} \sum_{i=1}^{n} (5+\frac{3i}{n})^3 \frac{3}{n}$
- 10. Evaluate the definite integral $\int_{-\frac{\pi}{2}}^{\frac{\pi^2 \sin x}{5+x^6}} dx$.

 - (a) 0 (b) -2 (c) 0.1 (d) 1 (e) 3

- 11. Find (approximately) the area of the region bounded by the curves

$$y=4+x^2$$
, $y=4+e^{-x^2}$.

- (a) S = 1.01 (b) S = 0.96 (c) S = 0.98 (d) S = 0.99 (e) S = 0.97
- 12. Evaluate the integral $\int_{0}^{1} x^{3}e^{-x^{4}}dx$.

 - (a) $\frac{1}{5}(1-e)$ (b) $\frac{1}{4}(e^{-1}-1)$ (c) $\frac{1}{4}(1-e^{-1})$ (d) $4(1-e^{-1})$ (e) $5(1-e^{-1})$

- 13. Find $\lim_{x\to\infty} x^3 e^x$.
 - (a) $-\infty$ (b) 0 (c) 1/3 (d) 3 (e) ∞

國立雲林科技大學

97 學年度碩士班入學招生考試試題

系所:工管所·運籍所

科目:微積分

- 14. Evaluate the definite integral $\int \sin^3 2x \cos 2x dx$.
 - (a) $-\frac{1}{10}\cos^5 2x + \frac{1}{6}\cos^3 2x + C$.
 - (b) $\frac{1}{10}\cos^5 2x \frac{1}{6}\cos^3 2x + C$.
 - (c) $-\frac{1}{10}\sin^5 2x \frac{1}{6}\sin^3 2x + C$.
 - (d) $-\frac{1}{10}\sin^5 2x + \frac{1}{6}\sin^3 2x + C$
 - $10\sin^5 2x + 6\sin^3 2x + C$
- 15. Find the solution of the differential equation $x + 4y^3\sqrt{x^2 + 1} \frac{dx}{dy} = 0$ that satisfies the initial condition y(0) = 6.
 - (a) $y = \sqrt[4]{1296 + \sqrt{x^2 + 1}}$.
 - (b) $y = \sqrt[4]{1297 \sqrt{x^2 1}}$.
 - (c) $y = \sqrt[4]{1297 + \sqrt{x^2 + 1}}$.
 - (d) $y = \sqrt[4]{1296 \sqrt{x^2 + 1}}$
 - (e) $y = \sqrt[4]{1297 \sqrt{x^2 + 1}}$
- 16. Determine whether the series is convergent or divergent. If it is convergent, find its
 - (a) divergent (b) $\frac{7}{4}$ (c) $\frac{4}{7}$ (d) $\frac{1}{2}$ (e) $\frac{9}{28}$
- 17. Find the Maclaurin series of $f(x) = x \cos(2x)$.
- (e) $\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} x^{2n+1}}{n!}$
- 18. Calculate the double integral $\iint_{R}^{\frac{xy^2}{x^2+1}} dA$, $R = \{(x,y) | 0 \le x \le 4, -3 \le y \le 3\}$.

 (a) $7 \ln 5$ (b) $7 \ln 17$ (c) $9 \ln 17$ (d) $9 \ln 5$ (e) $6 \ln 17$