淡江大學97學年度碩士班招生考試試題 系別:數學學系 科目:機率 本試題共 / 頁, 6 大題 1. (25%) A common test for AIDS is called the ELISA test (Enzyme-Linked Immunosorbent Assay). Among 1,000,000 people who are given the ELISA test, we can expect results similar to those given in the table. | | B ₁ : Carry AIDS Virus | B ₂ : Do Not Carry AIDS Virus | Totals | |--------------------------------|-----------------------------------|--|-----------| | A ₁ : Test Positive | 4,885 | 73,630 | 78,515 | | A ₂ : Test Negative | 115 | 921,370 | 921,485 | | Totals | 5,000 | 995,000 | 1,000,000 | If one of these 1,000,000 people is selected randomly, find the following probabilities: (a) $P(B_1)$, (b) $P(A_1)$, (c) $P(A_1|B_2)$, (d) $P(B_1|A_1)$, (e) In words, what do parts (c) and (d) say? - 2. (15%) Let the random variable X have the p.m.f. $f(x) = \frac{(|x|+1)^2}{9}$, x = -1,0,1. Compute E(X), $E(X^2)$, and $E(3X^2 - 2X + 4)$. - 3. (20%) The random variable X has a gamma distribution, denoted by $X \sim \Gamma(\alpha, \theta)$, if its p.d.f. is defined by $f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha-1} e^{-x/\theta}, 0 \le x < \infty$. - (a) Find the moment-generating function of X. - (b) Show that $E(X) = \alpha \theta$ and $Var(\theta) = \alpha \theta^2$. - 4. (10%) Let X_1 and X_2 be two independent random variables with respective means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 . Show that the mean and the variance of $Y = X_1 X_2$ are $\mu_1 \mu_2$ and $\sigma_1^2 \sigma_2^2 + \mu_1^2 \sigma_2^2 + \mu_2^2 \sigma_1^2$, respectively. - 5. (20%) Let the independent random variables X_1 and X_2 be N(0,1) and $\chi^2(\gamma)$, respectively. Let $Y = X_1 / \sqrt{X_2 / \gamma}$ and $Z = \sqrt{X_2 / \gamma}$. - (a) Find the joint p.d.f. of Y and Z. (Hint: $\chi^2(\gamma) = \Gamma(\gamma/2, 2)$) - (b) Determine the marginal p.d.f. of Y. - 6. (10%) Let X equal the birth weight in grams of a baby born in the Taiwan. Assume that E(X) = 3320 and $Var(X) = 660^2$. Let \overline{X} sample mean of a random sample of size n = 225. Find $P(3233.76 \le \overline{X} \le 3406.24)$, approximately.