淡江大學97學年度碩士班招生考試試題

系別:數學學系

科目:高等微積分

A

本試題共 1 頁, 7 大題

- (20%) 1. (a) Give a definition of compactness
 - (b) Give a definition of uniform continuity.
 - (c) Let f be a continuous function on a bounded closed interval [a, b] into R. Show that f is uniformly continuous on [a, b].

(10%) 2. If
$$s_1 = \sqrt{2}$$
, and $s_{n+1} = \sqrt{2 + \sqrt{s_n}}$, $n = 1, 2, 3, ...$, prove that $\lim_{n \to \infty} s_n$ exists.

- (10%) 3. Let f be defined on [a, b]. If f is differentiable at $c \in (a, b)$, show that f is continuous at c.
- (20%) 4. (a) Let α be a monotonically increasing function on [a, b] and f be a bounded function on [a, b]. Give a definition of the Riemann-Stieltjes integral of f with respect to α , over [a, b].
 - (b) Evaluate

$$\int_0^2 e^x d[x]$$

where [x] is Gauss Integer function.

(20%) 5. (a) Give an example to show that f_n is Riemann integrable on [a, b] such that

$$f(x) = \lim_{n \to \infty} f_n(x)$$
, but

$$\lim_{n\to\infty}\int_a^b f_n(x)dx\neq\int_a^b f(x)dx$$

(b) Let f_n is Riemann integrable over [a, b]. Suppose f_n converges to f uniformly. Show that f is Riemann integrable over [a, b] and

$$\lim_{n\to\infty}\int_a^b f_n dx = \int_a^b f dx$$

(10%) 6. (a) Is it possible to solve

$$xy^{2} + xzu + yv^{2} = 3$$
$$u^{3}yz + 2xv - u^{2}v^{2} = 2$$

for u, v interms of x, y, z near (x, y, z) = (1,1,1), (u, v) = (1,1)?

(b) Find
$$\frac{\partial u}{\partial x}$$
, $\frac{\partial v}{\partial y}$ at (1,1,1).

(10%) 7. Let
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

- (a) Is f(x, y) continuous at (0,0)? Explain why.
- (b) Find $(D_1 f)(x, y)$ and $(D_2 f)(x, y)$ for all $x, y \in \mathbb{R}^2$.