淡江大學97學年度碩士班招生考試試題

系別:產業經濟學系

科目:微 積 分

A

准帶:	項目請打「V」	
	簡單型計算機	
本試題	其	大題

- 1. Assume that the equation $F(u; x, y) = u^3 x^2 + 3xy + yu + y^2 13 = 0$ implicitly defines a utility function u = f(x, y) around the point (u = 1, x = 1, y = 2). Please find the marginal utilities of x and y, and the slope of the indifference curve. Then evaluate them at that point. (15)
- 2. Find the partial total derivative $\S z/\S v$, given $z = (x+2y)^2(2x-y)^3+v^2$, where $x = u^2 + 2v$, $y = 2u v^3$. (10)
- 3. Suppose that an investment \$A\$ at the present time (t=0) will increase the value according to the function $V = e^{3\sqrt{t}}$. Let the discount rate (on the continuous basis) be r. Please find the optimal time for this investment project. Be sure to check the first and second order conditions. (15)
- 4. Find the derivatives of $y = 2xe^{1-x^2} + \ln\left(\frac{2x}{1-3x}\right)$. (10)
- 5. Find dy for the function $y = \frac{x_1 x_2}{2x_1 x_2^2}$. (10)
- 6. Find the extreme values of $z = -x_1^3 + 2x_1x_2 + 2x_3 x_2^2 x_3^2$, and check if they are maximum, minimum, or inflection point. (15)
- 7. Check whether the function $z = x_1 \ln x_2^2$ is quasiconcave, quasiconvex, both, or neither. (10)
- 8. Solve the first-order linear differential equations: $\frac{dy}{dt} + t^2y = 2t^2$, y(0) = 6 and $\frac{dy}{dt} + 4t^2y = 0$. (15)