静宜大學97學年度碩士班招生考試試題

系所:應用數學系

科目:數值分析

共 2 頁

Instruction:

- 20 points to each problem. Answer 5 problems from the following problems.
- No calculator, translator or other related electronic device are allowed.
- 1. (20 points) Let $f \in C^{\infty}(R)$. The n-th Taylor's expansion at x = a can be expressed as

$$f(x) = p_n(x) + R_n(x)$$

where $p_n(x)$ is the n-th Taylor's polynomial and

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

is the remainder. Here c lies between x and a,

- (a) Derive the formula for $p_n(x)$.
- (b) Let $f(x) = e^x$ and a = 0. Find an n so that the error, $|f(x) p_n(x)|$, is less than 5×10^{-5} . Find each coefficient of $p_n(x)$.
- (c) Conclude on convergence from the table below when Taylor polynomials of different order are used to approximate e^x at x = 0.

x	$p_1(x)$.	$p_2(x)$	$p_3(x)$	e [±]
-2.0	-1.0	1.000	-0.33333	0.13534
-1.0	0.0	0.500	0.33333	0.36788
-0.5	0.5	0.625	0.60417	0.60653
-0.1	0.9	0.905	0.90483	0.90484
0.0	1.0	1.000	1.00000	1.00000
0.1	1.1	1.105	1.10517	1.10517
0.5	1.5	1.625	1.64583	1.64872
1.0	2.0	2.500	2.66667	2.71828
2.0	3.0	5.000	6.33333	7.38906

2. (20 points)

- (a) Give an estimate for $\sqrt{2}$ by means of the Bisection Method after two steps with starting point $x_0 = 1$, and $x_1 = 2$. That is, find x_4 .
- (b) Give an estimate for $\sqrt{2}$ by means of the Newton's Method after two iterations with the starting point $x_0 = 1$. That is, find x_2 .
- (c) State the advantage and disadvantage of the Bisection Method and the Newton's Method for finding roots.
- 3. (20 points) Let $f \in C^2(R)$.
 - (a) Use Taylor expansion to show

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{f''(c)}{2}h$$

and

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{f'''(c)}{6}h^2$$

系所:應用數學系

科目: 數值分析

共 2 頁

(b) Use a computer to approximate $f'(\sqrt{2})$, where $f(x) = \tan^{-1} x$. Use

$$f'(x) \approx \frac{1}{h}[f(x+h) - f(x)]; \quad f'(x) \approx \frac{1}{2h}[f(x+h) - f(x-h)]$$

with step size h approaching 0. Recall that the exact value is $\frac{1}{3}$. Some of the output from a 32-bit machine is shown here:

$f'(x) \approx \frac{1}{h}[f(x+h)-f(x)]$		$f'(x) pprox rac{1}{2h}$	[f(x+h)-f(x-h)]	
h		value	h	value
	52×10^{-1}	0.32374954	.25	0.33719385
1.2	24×10^{-3}	0.33325195	.98×10 ⁻³	0.33334351
9.	95×10^{-6}	0.31250000	.38×10 ⁻⁵	0.32812500
] .!	15×10^{-7}	0.00000000	.15×10 ⁻⁷	0.00000000

- i. Which approximation is better? Why?
- ii. Theoretically, when h tends to 0, the numerical values should tend to the exact value. Explain why this fails in the above table.
- 4. (20 points)

$$A = \left(\begin{array}{ccc} 3 & -1 & 1 \\ 3 & 6 & 2 \\ 3 & 3 & 7 \end{array}\right)$$

- (a) Is A positive definite? Is A a diagonally dominant matrix? Prove or disprove.
- (b) Find the LU factorization of A in which L is lower triangular and U is upper triangular with identity diagonal.
- (c) Consider the system Ax = b, where $b = [1,0,4]^t$. Apply the Gauss-Seidel iteration to obtain $x^{(1)}$ and $x^{(2)}$ starting with $x^{(0)} = (0,0,0)^t$.

5. (20 points)

(a) Compute a divided difference table for these function values

(b) Find a polynomial of degree no greater than 5 which interpolates the above function values.

6. (20 points)

(a) Derive the Trapezoidal rule and the Simpson rule.

$$\int_a^b f(x)dx = \frac{b-a}{6}[f(a)+4f(\frac{a+b}{2})+f(b)]; \qquad \int_a^b f(x)dx = \frac{b-a}{2}[f(a)+f(b)].$$

(b) Apply the Simpson rule and the Trapezoidal rule separately to calculate $\int_0^1 x^3 + 2x^2 + 1dx$ with 4 equal subintervals.