朝陽科技大學 100 學年度碩士班招生考試試題

系 (所)別:應用化學系 組 別:一般生

滿分: 50分

,SE

目:物理化學

第 | 頁共 2 頁

1.(15 \acute{T}) (a) Calculate the standard Gibbs energy change of the reaction $N_2(g) + 3H_2(g) \Rightarrow 2NH_3(g)$ at 298.15 K. (b) Calculate the equilibrium constant of the same reaction at 298.15 K. (c) Using the

Gibbs-Helmholtz equation, $\frac{\Delta G(T_2)}{T_2} - \frac{\Delta G(T_1)}{T_1} = \Delta H \cdot \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$, calculate the Gibbs energy change of the

same reaction at 500.0 K.

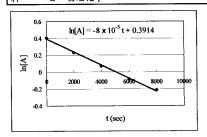
	N ₂ (g)	H ₂ (g)	NH ₃ (g)
Standard enthalpy of formation (298.15K), $\Delta_f H^o$ (kJ/mol)	0	0	-46.11
Standard Gibbs energy of formation (298.15K), $\Delta_f G^o$ (kJ/mol)	0	0	-16.45

2.(5 $\frac{4}{12}$) The energy levels of Hydrogen atoms are given by $E_n = -\frac{2.18 \times 10^{-18}}{n^2}$ J. Calculate the wavelength of radiation required to excite the electron of a Hydrogen atom from 1s orbital to 2p orbital. (h = 6.626 × 10⁻³⁴ J s)

3.(5 ??)) Consider the vibrational spectra of diatomic molecules, A—B, with the permitted vibration energy levels $E_n = \left(n + \frac{1}{2}\right)$ hv, where $n = 0, 1, 2, ...; v = \frac{1}{2\pi}\sqrt{\frac{k}{\mu}} \cdot k$ is the force constant of the bond, μ is the reduced mass, $\frac{1}{\mu} = \frac{1}{m_A} + \frac{1}{m_B}$. If the frequency of the fundamental vibrational transition of 1H — 1H is 1.32 \times 10 1H Hz, calculate the frequency of the fundamental vibrational transition of D—D (i.e. 2H — 2H) on the assumption that the force constants of 1H — 1H and D—D are the same.

4.(15 $\stackrel{.}{?}$) The thermal decomposition of an organic compound, $A \rightarrow B + C$, produced the following data; determine the order of the reaction, the rate constant, and the half-life of the compound A.

t (sec)	0	2000	4000	6000	8000
[A] (M)	1.5	1.26	1.07	0.92	0.81


朝陽科技大學 100 學年度碩士班招生考試試題

(所)別:應用化學系

滿分: 50 分

別:一般生 組 目:物理化學

第2頁共2頁

5.(10分) The Michaelis-Menten mechanism of enzyme catalysis consists of

(i) E+S
$$\xrightarrow{kl}$$
 ES

(i) E+S $\stackrel{\text{kl}}{\longleftarrow}$ ES, (ii) ES $\stackrel{\text{kl}}{\longrightarrow}$ P+E, where E is the enzyme, S the substrate, and ES the

enzyme-substrate complex.

- (a) Calculate the concentration of ES by invoking the steady-state approximation;
- (b) Using the result of (a), deduce the rate law for the reaction, i.e. $\frac{d[P]}{dt} = ?$