國立嘉義大學100學年度

資訊工程學系碩士班(乙組)招生考試試題

科目:電子電路學

1. Find the equivalent resistance " R_{ab} " between terminals *a* and *b* in circuit of Fig. 1. (10%)

- 2. The equivalent circuit of Fig. 2 has $V_{\rm TH} = 35$ V and $R_{\rm eq} = 500 \Omega$. If the conditions for "maximum power transfer" exist, determine:
 - (a) The value of " R_L ". (10%)
 - (b) The power " P_L " developed in R_L . (5%)

3. For the circuit shown in Fig. 3, find the impedance "Z", given $\omega = 4$ rad/s. (8%)

4. In the circuit of Fig. 4, a weighted summer circuit using an ideal op amp has three inputs using 100 k Ω resistors and a feedback resistor $R_{\rm f}$ of 50 k Ω . A signal v_1 is connected to two of the inputs while a signal v_2 is connected to the third. (a) Express " v_0 " in terms of v_1 and v_2 . (10%) (b) If $v_1 = 3$ V and $v_2 = -3$ V, what is " v_0 "? (5%)

背面尚有試題

Fig. 3

Fig. 4

- 5. Assuming that the diodes in the circuits of Fig. 5 and Fig. 6 are ideal, find the values of the labeled voltages and currents:
 - (a) The values of labeled voltage " V_1 " and current " I_1 " of Fig. 5. (10%)
 - (b) The values of labeled voltage " V_2 " and current " I_2 " of Fig. 6. (10%)

- (a) Derive the expression for the overall voltage gain " $G_v = v_o / v_{sig}$ ". (10%)
- (b) If the overall voltage gain G_v of the amplifier was measured with a resistance R_s of 1 k Ω in place and found to be -10 V/V. When R_s is shorted, but the circuit operation remained linear the gain doubled ($G_v = -20$ V/V). What must " g_m " be? (6%)
- (c) What value of " R_s " is needed to obtain an overall voltage gain G_v of -8 V/V? (6%)

7. For the circuit in Fig. 8 select a value for " R_E " so that the transistor saturates with a forced β of 10. Assume $V_{\text{EB}} = 0.7$ V and $V_{\text{EC,sat}} = 0.2$ V. (10%)

Fig. 7

Fig. 8