國立臺北科技大學 100 學年度碩士班招生考試

系所組別:2401 光電工程系碩士班

第三節 電子學 試題 (選考)

第一頁 共二頁

注意事項:

- 1. 本試題共五題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。

[1] 20%

A short-base diode is one where the widths of the p and n regions are much smaller than L_n and L_p , respectively. As a result, the excess minority-carrier distribution in each region is a straight line rather than the exponentials shown in Fig. 1.

- (a) For the short-base diode, sketch a figure corresponding to Fig. 1, and assume, as in Fig. 1, that $N_A >> N_D$. (5%)
- (b) Show that if the widths of the p and n regions are denoted W_p and W_n then

$$I = Aqn_i^2 \left[\frac{D_p}{(W_n - x_n)N_D} + \frac{D_n}{(W_p - x_p)N_A} \right] (e^{V/V_T} - 1)$$

and

$$Q_{p} = \frac{1}{2} \frac{\left(W_{n} - x_{n}\right)^{2}}{D_{p}} I_{p} \cong \frac{1}{2} \frac{W_{n}^{2}}{D_{p}} I_{p}, \text{ for } W_{n} >> x_{n}. \tag{5\%}$$

(c) Also, assuming $Q \cong Q_p$, $I \cong I_p$, show that

$$C_d = \frac{\tau_T}{V_T} I$$

where

$$\tau_T = \frac{1}{2} \frac{W_n^2}{D_n} \cdot (5\%)$$

(d) If a designer wishes to limit C_d to 8 pF at I=1 mA, what should W_n be? Assume $D_p = 10$ cm²/s. (5%)

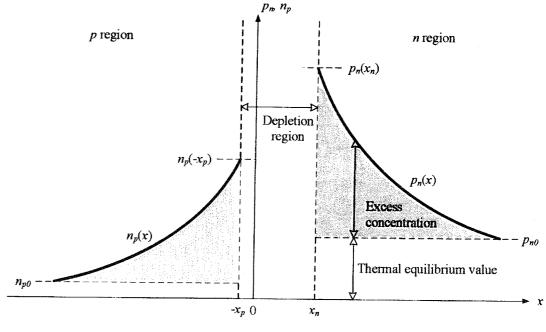


Fig. 1

[2] 20%

For the circuit of Figure 2, the OP-Amp has open-loop gain $A_d = 10^4 \ V/V$, differential input resistance $R_{id} = 100 \text{K}\Omega$, and incremental output resistance $r_o = 1 \ \text{K}\Omega$. Please use the feedback method to find:

- (1) The voltage gain v_o/v_s . (5%)
- (2) The input resistance R_{in} . (5%)
- (3) The output resistance R_{out} . (5%)
- (4) What is the configuration of the feedback amplifier? (5%)

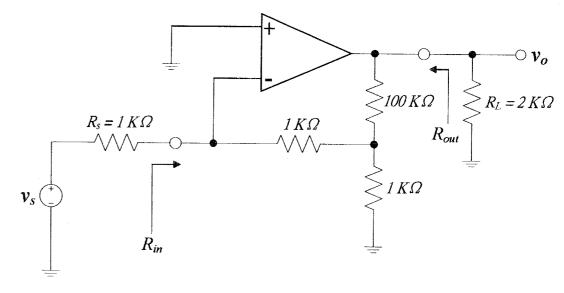


Fig. 2

注意:背面尚有試題

第二頁 共二頁

[3] 20%

For the circuit in Fig. 3, $|V_T| = 1V$, $k'W/L = 1mA/V^2$, $h_{fe} = 100$, and the Early voltage magnitude for all devices (including those that implement the current sources) is 100V. The signal source V_s has a zero dc component. Find the dc voltage at the output and at the base of Q_3 . Find the values of A, β , A_f , R_{in} and R_{out} .

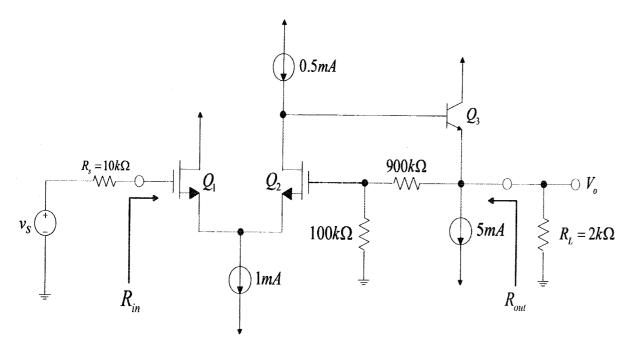


Fig. 3

[4] 20%

For the circuit of Fig. 4. Please find:

- (1) The total gain $A_{db,total}$ of this complete filter. (5%)
- (2) The bandwidth BW of this complete filter. (5%)
- (3) The center frequency f_0 of this filter. (5%)
- (4)Draw the Bode plot for the complete filter. (5%)

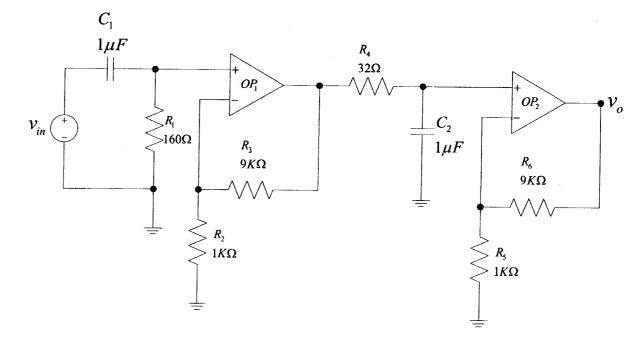


Fig. 4

[5] 20%

As shown in Figure 4, the schematic of a state-variable filter as shown contains passive elements and ideal operational amplifiers. Please derive the transfer functions of $V_1(S)/V_i(S)$ (10%), and $V_3(S)/V_i(S)$. (10%)

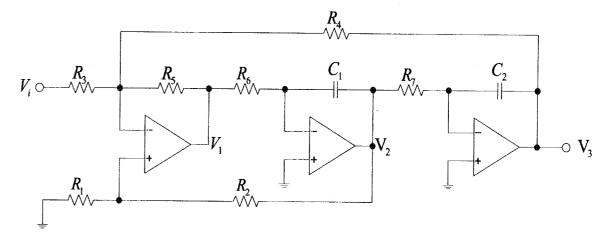


Fig. 5