國立臺北科技大學 100 學年度碩士班招生考試

系所組別:2240 電腦與通訊研究所丁組

第一節 數位邏輯設計 試題

第一頁 共一頁

注意事項:

- 1.本試題共8題,配分共100分。
- 2.請標明大題、子題編號作答,不必抄題。
- 1. A typical personal computer uses a 16-bit address code for its memory locations. Please answer the following questions:

(a) What is the range of addresses?

5分

(b) What is the total number of memory locations?

5分

2. Apply the input waveforms of Figure 1 to an Exclusive-OR (XOR) gate, and draw the output waveform. 10分

Figure 1 Input waveforms

- 3. Design a logic circuit with three inputs A, B, C and an output Y that goes LOW only when A is LOW while B and C are different. 10分
- 4. Construct a MOD-13 ripple counter by J-K Flip-Flops that will count from 0000 (zero) through 1100 (decimal 12). 10分
- 5. A state table for the PRESENT and NEXT states of the three J-K Flip-Flops C, B, and A is shown in Table 1. Please answer the following questions.
 - (a) Use the state table, Table 1, to set up a state transition diagram. 10分
 - (b) Use the state table, Table 1, to implement the synchronous counter circuits by the three J-K Flip-Flops and some combinational logics. 20分

Table 1 State	table

PRESENT			NEXT		
State			State		
C	В	A	C	В	A
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	0	0

- 6. Construct a Switch Circuit as shown in Figure 2 by combinational logics which function describes in the following: 10分
 - (1) If control = 0, then X = A and Y = B,
 - (2) If control = 1, then X = B and Y = A.
- 7. Use 8-to-1 multiplexer to implement a logic function described by the truth table, shown in Table 2. 10分
- 8. Use hardware description language (For example, VHDL or Verilog) to implement a 4-to-2 *Encoder*, which function block and truth table are shown in Figure 3. 10 分

Table 2 Truth table					
-	Input			Output	
	C	В	A	Y	
	0	0	0	0	
	0	0	1	1	
	0	1	0	1	
	0	1	1	0	
	1	0	0	1	
	1	0	1	0	
	1	1	0	0	
	1	1	1	0	

Encoder

(a) Function block

Input				Out	tput
I_3	I_2	I_1	I_0	Y_1	Y_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

(b) Truth table

Figure 3 4-to-2 Encoder