國立臺北科技大學 100 學年度碩士班招生考試

系所組別:2220 電腦與通訊研究所乙組

第二節 通訊系統 試題

第一頁 共一頁

注意事項:

- 1. 本試題共 6 題,配分共 100 分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. (12%) Consider a signal

$$x(t) = 60\operatorname{sinc}(600t) + 50\operatorname{sinc}^2(500t)$$

- (1) Determine the Fourier transform of the signal. (4%)
- (2) Specify the Nyquist rate and the Nyquist interval for the signal. (8%)
- 2. (16%) A pseudo-noise (PN) sequence is generated using a feedback shift register of length m = 10. The chip rate is 10^6 chips per second. Determine the following parameters:
 - (1) PN sequence length. (4%)
 - (2) Chip duration of the PN sequence. (4%)
 - (3) PN sequence period. (4%)
 - (4) The total number of runs. (4%)
- 3. (18%) The input to a low-pass filter with impulse response

$$h(t) = 20e^{-5t}u(t)$$

is white Gaussian noise with mean zero and single-sided power spectral density 2×10^{-2} W/Hz.

- (1) Determine the power spectral density of the output. (4%)
- (2) Determine the autocorrelation function of the output. (4%)
- (3) Determine the probability density function of the output. (4%)
- (4) Is still a white noise of the output? (3%)
- (5) Is still a Gaussian noise of the output? (3%)

- 4. (20%) An FM modulator is followed by an ideal band-pass filter having a center frequency of 50 kHz and a bandwidth of 28 kHz. The gain of the filter is one in the passband. The unmodulated carrier is given by $20\cos(10^5\pi t)$, and the message signal is $m(t) = 2\cos(8\times10^3\pi t)$. The frequency sensitivity factor of the modulator is 10 kHz/v.
 - (1) Determine the peak frequency deviation in hertz. (3%)
 - (2) Determine the peak phase deviation in radians. (4%)
 - (3) Determine the modulation index. (3%)
 - (4) Determine the power at the filter input and the filter output. (10%)

Table 1: Bessel Functions

n	$\beta = 0.05$	$\beta = 0.1$	$\beta = 0.2$	$\beta = 0.3$	$\beta = 0.5$	$\beta = 0.7$	$\beta = 1.0$	$\beta = 2.0$	$\beta = 3.0$	$\beta = 5.0$	$\beta = 7.0$	$\beta = 8.0$	$\beta = 10.0$
0	0.999	0.998	0.990	0.978	0.938	0.881	0.765	0.224	-0.260	-0.178	0 300	0.172	-0 246
1	0.025	0.050	0 100	0.148	0.242	0.329	0.440	0.577	0 339	-0.328	-0.005	0.235	0.043
2		0 001	0 005	0.011	0.031	0.059	0.115	0.353	0.486	0.047	0.301	-0.113	0.255
3				0.001	0.003	0.007	0.020	0.129	0 309	0.365	-0.168	-0.291	0.058
4						0.001	0.002	0.034	0.132	0.391	0.158	-0.105	-0.220
5								0.007	0 043	0.261	0.348	0.186	-0.234
6								0.001	0 011	0.131	0.339	0.338	-0.014
7									0.003	0 053	0.234	0.321	0.217
8										0.018	0.128	0.223	0.318
9										0.006	0.059	0.126	0.292
10										0.001	0.024	0.061	0 207

5. (18%) A binary FSK signal is given by

$$\begin{cases} s_1(t) = \cos(6000\pi t) & 0 \le t \le 0.002 \ s \\ s_2(t) = \cos(5000\pi t) & 0 \le t \le 0.002 \ s. \end{cases}$$

Assume that the single-sided AWGN power spectral density is 0.0001 W/Hz.

- (1) Determine the basis functions $\phi_1(t)$ and $\phi_2(t)$, and draw the signal-space diagram for the FSK system. (10%)
- (2) Determine the bit error probability for the coherent binary FSK system. (8%)
- 6. (16%) For a BPSK system, the received signals, $s_1(t) = 0.5\cos(2\pi f_c t)$ and $s_2(t) = -0.5\cos(2\pi f_c t)$, are coherently detected with a correlator.

Assume that the single-sided AWGN power spectral density is 2×10^{-7} W /Hz.

- (1) Plot the block diagram for the coherent BPSK receiver and determine the bit error probability for the system with a bit rate of 100 kbps. (12%)
- (2) In part (1), what is the minimum transmission bandwidth required? (4%)

Note: If necessary, express your answer in terms of the complementary error function defined by $erfc(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp(-z^2) dz$.