國立臺北科技大學 100 學年度碩士班招生考試

系所組別:2140、2150 電機工程系碩士班丁、戊組

第二節 工程數學 試題

第一頁 共一頁

注意事項:

- 1. 本試題共7題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. (12%) A coin is biased so that a head is twice as likely to occur as a tail. Toss the coin 3 times. Event A denotes that at least 2 heads occur in three tosses. Event B denotes that only one tail occurs in three tosses. Find P(A), P(B), and P(B/A).
- 2. X and Y are two random variables with joint probability density function

$$f_{XY}(x,y) = \begin{cases} 1 & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{else} \end{cases}.$$

Define the random variables U = X + Y and V = X - Y.

- a) (4%) Find the joint cumulative distribution function $F_{XY}(x, y)$.
- b) (4%) Find the cumulative distribution functions $F_{\nu}(x)$ and $F_{\nu}(y)$.
- c) (2%) Are X and Y independent? Explain your answer.
- d) (4%) Find the value of the joint cumulative distribution function $F_{UV}(1,0)$.
- e) (4%) Find the cumulative distribution function $F_U(u)$ of U.
- f) (2%) Find the probability density function $f_U(u)$ of U
- 3. X_1, X_2, \cdots are independent random variables with the same probability mass function $P(X_n = 0) = P(X_n = 2) = \frac{1}{2}, n = 1, 2, \cdots$. Define the random variables Y_n , $n = 1, 2, \cdots$ by $Y_n = \sum_{k=1}^n X_k$.
 - a) (4%) Find EX_n and $var(X_n)$.
 - b) (4%) Find EY_n and $var(Y_n)$.
 - c) (3%) Find the covariance function $cov(Y_i, Y_i)$ for $i, j \in \mathbb{N}$.
 - d) (3%) Find the probability mass function of Y_n .
 - e) (4%) Find $P(Y_n = i, Y_{n+1} = j)$.

4. (10%) Let
$$A = \begin{bmatrix} 1 & 1 & 2 & 0 \\ 2 & 1 & 3 & 1 \\ 1 & 2 & 0 & 1 \end{bmatrix}$$
. Find the nullity and the null space of A .

5. (10%) Let L be the linear mapping in R^3 defined by L(x) = Ax corresponding to the

standard basis, where
$$A = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{bmatrix}$$
, and let $v_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, and $v_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ form

another basis $[v_1, v_2, v_3]$. Find the matrix B representing L with respect to $[v_1, v_2, v_3]$.

6. Let
$$A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 2 & 0 & 1 & 1 \\ 2 & 7 & 7 & 1 \\ 2 & 1 & 7 & 1 \end{bmatrix}$$

- a) (10%) Find the determinant and all eigenvalues of A;
- b) (10%) Find the inverse of A.
- 7. (10%) Prove in English that "The system of n linear equations in n unknowns Ax = b has a unique solution of and only if A is nonsingular."

(Note: No credit will be given if the answer is given in Chinese)