國立臺北科技大學 100 學年度碩士班招生考試

系所組別:2120 電機工程系碩士班乙組

第一節 電路學 試題

第一頁 共二頁

注意事項:

- 1. 本試題共 10 題,配分共 100 分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. Determine the h parameters in the following circuit. (10%)

2. In the following circuit, let $y_{12} = y_{21} = 0$, $y_{11} = 2\text{mS}$, $y_{22} = 10\text{mS}$. Find V_o/V_s . (10%)

3. For the linear system to be considered, when the input voltage is $V_i(s) = 2 \text{ V}$ and $V_o(s) = \frac{2s+14}{s^2+6s+8}$ V. Please find the output voltage $v_o(t)$ when the input voltage is

$$v_i(t) = 4e^{-t}u(t)$$
 V. (10%)

4. The voltage and the current at the terminals of a circuit are

$$v(t) = 2 + \cos \pi t + \sin \pi t + \cos 3\pi t \quad V$$

$$i(t) = 1 + \sin \pi t + \cos(3\pi t - 60^{\circ})$$
 A

Find the average power absorbed by the circuit. (10%)

5. Find the steady-state response, $v_o(t)$, of the following RC circuit. The input voltage $v_s(t)$ is the square wave shown in the following figure with $T = \pi$ seconds. In this case, we will represent this square wave by the first four terms of its Fourier series. (10%)

6. Find $v_o(t)$ in the following circuit if v(0) = 2V and i(0) = 1A. (10%)

7. The make-before-break switch in the following circuit has been in position 'a' for a long time. At t = 0, it moves instantaneously to 'b'. Find $i_0(t)$ for $t \ge 0$. (10%)

8. A professional center is supplied by a balanced three-phase source. The center has four balanced three-phase loads as follows:

Load 1: 150kVA at 0.8pf leading

Load 2: 100kW at unity pf

Load 3: 200kVA at 0.6pf lagging

Load 4: 80kW at 95kVAR (inductive)

If the line impedance is $0.02 + j0.05 \Omega$ per phase and the line voltage at the loads is 480V, find the magnitude of the line voltage at the source. (10%)

注意:背面尚有試題

9. Determine the Norton equivalent at terminals a-b in the following circuit. (10%)

10. For the following circuit to be considered, find I_1 using mesh analysis. (10%)

				-
				ø
	٠			
				-