國立臺北科技大學 100 學年度碩士班招生考試 系所組別:1521 自動化科技研究所乙組 第二節 電子學 試題 (選考) 第一頁 共二頁 ## 注意事項: - 1. 本試題共五題,配分共100分。 - 2. 請標明大題、子題編號作答,不必抄題。 - 3.全部答案均須在答案卷之答案欄內作答,否則不予計分。 - 1. Figure 1 shows a circuit having an input resistance of $100 \text{ k}\Omega$ and a gain that can be varied from -1 V/V to -10 V/V using the $10\text{-k}\Omega$ potentiometer R_4 . What is the voltage gain when the potentiometer is set exactly at its middle value? (14 pts) - 2. In Fig. 2, I is a dc current, v_i is a sinusoidal signal with small amplitude (less than 10 mV) and a frequency of 100 kHz, and the thermal voltage V_T is 25mV. Representing the diode by its small-signal resistance r_d , which is a function of I. (27 pts, each sub-problem is 9 pts) - (a) Sketch the small-signal circuit for determining the sinusoidal output voltage V_a . - (b) Find the phase shift between V_o and V_i . - (c) Find the value of I that will provide a phase shift of -45°. Figure 2 - 3. The amplifier shown in Fig. 3 has $R_s = R_L = 1 \text{ k}\Omega$, $R_C = 1 \text{ k}\Omega$, $R_B = 47 \text{ k}\Omega$, $\beta = 100$, $C_\mu = 0.8 \text{pF}$ (collector-base junction capacitance), $V_T = 25 mV$ (thermal voltage), and $f_T = 600 \text{MHz}$ (unity-gain bandwidth) and C_{C1} and C_{C2} are coupling capacitors. (27 pts, each sub-problem is 9 pts) - (a) Find the dc collector current of the transistor. - (b) Find g_m and r_{π} . - (c) Neglecting r_O , find the midband voltage gain from base to collector (neglect the effect of R_B). Figure 3 注意:背面尚有試題 - 4. The amplifier shown in Fig. 4 is biased to operate at $I_D=1$ mA, $g_m=1$ mA/V. Neglecting r_O . (18 pts, each sub-problem is 9 pts) - (a) Find the midband gain. - (b) Find the value of C_S that places f_L (the low 3-dB frequency) at 10Hz. Figure 4 5. Find the logic function implemented by the CMOS circuit shown below. (14 pts) | | • | | | |--|---|--|--| |