國立臺北科技大學 100 學年度碩士班招生考試

系所組別:1512 自動化科技研究所甲組

第二節 自動控制 試題(選考)

第一頁 共一頁

注意事項:

- 1. 本試題共5題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. (20%) A linear feedback control system has the block diagram shown in Figure 1. Let r=input, e=error, N=noise, and c=output.

$$G(s) = \frac{K(s+2)}{s(s+1)}$$

Figure 1

(1) (10%) Find the transfer function H(s) so that the output c(t) is not affected by the noise; that is,

$$\left. \frac{C(s)}{N(s)} \right|_{r=0} = 0$$

- (2) (10%) With H(s) as determined in part (1), find the value of K so that the steady-state value of e(t) is equal to 0.1 when the input is a unit ramp function, $r = tu_s(t)$, $R(s) = 1/s^2$, N=0.
- 2. (20%) Consider an unit feedback system with open-loop transfer function:

$$G(s) = \frac{K}{(s+1)(s+4)(s+10)}$$

- (1) (10%) Determine the range of K within which the closed-loop system is stable.
- (2) (10%) If K = 200, find the gain margin and phase margin.

3. (20%) Consider an unit feedback system:

Figure 2

Determine the maximum value of K(K>0) such that the system closed-loop poles are all real.

4. (20%) Consider an observer-based state feedback control $u(t) = -K\hat{x}(t)$ for the following system:

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \mathbf{u}(t)$$
$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}(t)$$

- (1) (10%) Determine the value K to move the system poles to $-0.5 \pm j0.5$.
- (2) (10%) Determine the observer gain L to let the observer mode locate at $-1 \pm j1$.
- 5. (20%) Consider the following tracking system:

Figure 3

- (1) (10%) Determine K and K_t so that the maximum overshoot $M_p = 0.2$ occurring at time instant $t_p = 1$ second.
- (2) (10%) Determine the rise time t_r and settling time t_s .