國立臺北科技大學 100 學年度碩士班招生考試 系所組別:1310、1320、1330 車輛工程系碩士班甲、乙、丙組 第二節 工程數學 試題

第一頁 共一頁

注意事項

- 1. 本試題共十題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分
- \((10\%)) Find the general solution of the differential equation

$$y' = (x + y + 1)^2$$
. (hint: $\int \frac{1}{x^2 + 1} dx = \tan^{-1} x$)

(10%) Prove that a particular solution of a differential equation $y'' + p(x)y' + q(x)y = r(x) \text{ can be found by } y_p = -y_1 \int \frac{y_2 r}{W} dx + y_2 \int \frac{y_1 r}{W} dx,$

where y_1, y_2 form a basis of solutions of the homogeneous equation y'' + p(x)y' + q(x)y = 0 and $W = y_1y_2' - y_2y_1'$

- $\equiv (10\%)$ Find the general solution of the differential equation $x^2y'' 2xy' + 2y = x^3 \sin x$. (hint: $\int x \sin x dx = \sin x x \cos x$)
- \square \((10%) Solve he differential equation $y' + 3y = 2\delta(t)$ with the initial condition y(t) = 1, when t < 0, where $\delta(t)$ is the unit impulse function defined as

$$\delta(t) = \lim_{k \to 0} f_k(t), \text{ and } f_k(t) = \begin{cases} 1/k, & \text{if } 0 \le t \le k \\ 0, & \text{otherwise} \end{cases}.$$

 Ξ > Find the Laplace transform of the following functions.

1. (5%) $te^t \sin(t)$

(hint:
$$L[tf(t)] = -\frac{dF(s)}{ds}$$
, $L[e^{at}f(t)] = F(s-a)$, where $F(s) = L[f(t)]$)

2. (5%) $u(t-1)\sin(t)$, where u(t-a) is the unit step function defined as

$$u(t-a) = \begin{cases} 0, & \text{if } t < a \\ 1, & \text{if } t \ge a \end{cases} \text{ (hint: } \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \text{)}$$

 \uparrow \((10%) Find the eigenvalues and the eigenvectors of $\mathbf{A} = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$.

 \pm \cdot (10%) Find the general solution of the system of differential equations

$$y_1' = 3y_1 - y_2 y_2' = y_1 + y_2 .$$

 $\wedge (10\%)$ Evaluate $e^{\mathbf{A}}$, where $\mathbf{A} = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$ and $e^{\mathbf{A}} = \mathbf{I} + \mathbf{A} + \frac{1}{2!}\mathbf{A}^2 + \cdots$.

Each entry of the resulted matrix can be expressed by the exponential function.

九、(10%) Find the equation of the intersection line of two planes x+y+z=6 and x-y+z=2.

 $+\cdot (10\%)$ The inverse of a nonsingular $n \times n$ matrix $\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix}$ can be

evaluated by $\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} C_{ij} \end{bmatrix}^T$, where C_{ij} is the cofactor of a_{ij} , $\begin{bmatrix} C_{ij} \end{bmatrix}^T$ the

transpose of $[C_{ij}]$ and |A| the determinant of A. Evaluate |A| and A^{-1}

when
$$\begin{bmatrix} C_{ij} \end{bmatrix} = \begin{bmatrix} 8 & 0 & 0 & 0 \\ 9 & 4 & 0 & 0 \\ 0 & 5 & 2 & 0 \\ 7 & 6 & 3 & 1 \end{bmatrix}$$
.