國立臺北科技大學 100 學年度碩士班招生考試 系所組別:1111、1132機電整合研究所甲、丙組 第二節 電子學 試題 (選考)

第一頁 共二頁

注意事項:

- 1. 本試題共 4 題,配分共 100 分。
- 2. 請標明大題、子題編號作答,不必抄題
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. The BiCMOS circuit shown in Figure P1 is equivalent to a pnp bipolar transistor with infinite input impedance. The bias current is $I_Q = 0.5 \text{mA}$. The MOS parameters are V_{TP} = -0.5 V, k_P = 0.7 mA/V², and λ = 0, and the BJT parameters are β = 180, $V_{BE}(on)$ = 0.7 V, and $V_A = \infty$. (a) Sketch the small-signal equivalent circuit, and calculate the small-signal parameters for each transistor. (b) Determine the small-signal voltage gain $A_v = v_O / v_i$ for (i) $R_L = 10 \text{K}\Omega$ and (ii) $R_L = 100 \text{K}\Omega$. (c) Find the small-signal output resistance R_O . (Total 30%, each item 10%)

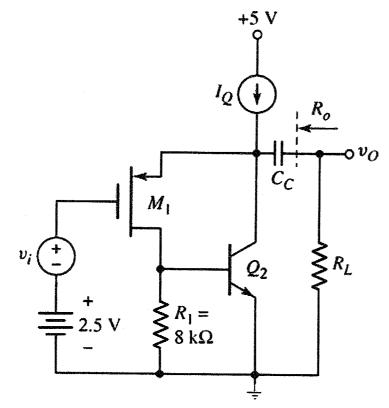


Figure of P1

2. Consider the circuit in Figure P2. Assume idea op-amps are used. (a) Derive the expression for the current i_0 as a function of input voltages v_{I1} and v_{I2} . (b) Design the circuit such that $i_0 = 5$ mA for $v_{I1} = 0.25$ V and $v_{I2} = -0.25$ V. (c) using the results of part (b), determine v_{O1} and v_{O2} if $R_L = 1 \text{K}\Omega$. (d) Determine i_O , v_{O1} , and v_{O2} for $R = 500 \Omega$, R_L = 3K Ω , v_{I1} = 1.25 V, and v_{I2} = 1.75 V. (Total 20%, each item 5%)

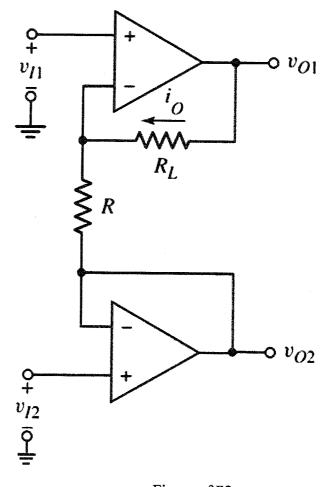


Figure of P2

- 3. A three-stage CMOS operational amplifier circuit is shown in Fig. P3. The transistor parameters are $V_{TN} = 0.7V$, $V_{TP} = -0.7V$, $k_n' = 80 \mu A/V^2$, $k_p' = 40 \mu A/V^2$, $\lambda_n = 0.01 \ V^{-1}$, $\lambda_{P} = 0.015~\text{V}^{-1}.$ Assume $I_{REF} = 160~\mu\text{A}$ and W/L of M_{8} is 25/4. (a) The overall differential voltage gain can write as $A_v = A_{d1} A_2 A_3$, Find $A_{d1} = v_{o1}/(v_2-v_1)$. (b) Find $A_2 = v_{o1}/(v_2-v_1)$. v_{o2}/v_{o1} . (c) The last stage is a class-AB output stage formed by M₆, M₇ and M₈, Find the standby current, I_{DQ} , of M_6 and M_7 ($I_{DQ} = I_{DQ6} = I_{DQ7}$). (Total 30%, each item 10%)
- 4. The saturated output voltages are $\pm V_P$ for the Schmitt trigger in Figure P4. (a) Derive the expressions for the crossover voltages V_{TH} and V_{TL} . (b) If $V_P = 12 \text{ V}$, $V_{REF} = -10 \text{ V}$, and $R_3 = 10 \mathrm{K}\,\Omega$, find R_1 and R_2 such that the switching point is $V_S = -5$ V and the hysteresis width is 0.2 V. (c) If $V_{REF} = -6 \text{ V}$, sketch the voltage transfer characteristics.

[Total 20%, (a) 10%, (b) 5%, (c) 5%]

注意:背面尚有試題

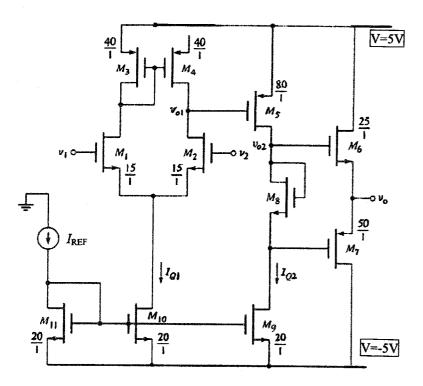


Figure of P3

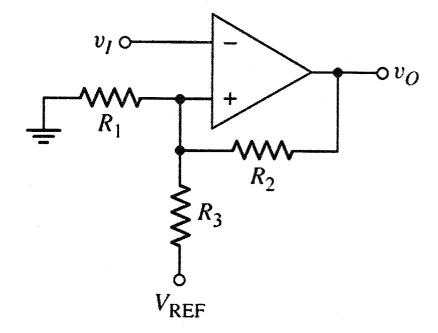


Figure of P4