1．Write out the expressions for Helmholtz free energy A and Gibbs free energy G ， respectively．Explain their physical meanings．（10\％）

2．Seam at $600^{\circ} \mathrm{C}$ and 10 bar enters steadily an adiabatic turbine with a velocity of 80 m / s and a flow rate of $5 \mathrm{~kg} / \mathrm{s}$ and leaves at $400^{\circ} \mathrm{C}$ and 1 bar ，with a velocity of 20 m / s ．Determine the power output from the turbine．（20\％）

$$
\begin{aligned}
& \mathrm{T}_{1}=600{ }^{\circ} \mathrm{C} \\
& \mathrm{P}_{1}=10 \mathrm{bar} \\
& \mathrm{H}_{1}=3698 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~V}_{1}=80 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3．A adiabatic device is designed to separate flowing air at $50^{\circ} \mathrm{C}$ and 5 bar into two streams of equal mass，one at $80^{\circ} \mathrm{C}$ and 2 bar ，and the other at $20^{\circ} \mathrm{C}$ and 3 bar ．Air can be assumed to be an ideal gas with a constant heat capacity of $\mathrm{C}_{\mathrm{p}}=29.3 \mathrm{~J} / \mathrm{mol}$ K．Is such a device possible？Explain why？（20\％）
Hint：$\underline{S}\left(T_{2}, P_{2}\right)-\underline{S}\left(T_{1}, P_{1}\right)=C_{p} \ln \left(T_{2} / T_{1}\right)-R \ln \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)$

4．Consider a container of volume 2.0 L that is divided into two compartments of equal size．In the left compartment there is nitrogen at 1.0 atm and $25^{\circ} \mathrm{C}$ ；in the right compartment there is oxygen at the same temperature and pressure．Calculate the entropy and Gibbs energy of mixing when the partition is removed．Assume that the gases are ideal（ 15% ）．

5．The partial molar volume of A at 298 K and 1^{\prime} atm is found to fit the expression

$$
\mathrm{V}_{\mathrm{A}}=32.28+18.216 \mathrm{a}^{1 / 2}
$$

Where V_{A} unit： $\mathrm{cm}^{3} /$ mole and a unit：mole $\mathrm{A} / \mathrm{kg} \mathrm{B}$ ．The molar volume of pure B （water）at 298 K and 1 atm is $18.079 \mathrm{~cm}^{3} /$ mole．Derive an equation for partial molar volume of B at 298 K and $1 \mathrm{~atm}(20 \%)$ ．

6．Calculate ΔS（for the system）when the state of 2.50 moles nitrogen，assumed to be an ideal gas，is changed from $25^{\circ} \mathrm{C}$ and 2.00 atm to $125^{\circ} \mathrm{C}$ and $8.00 \mathrm{~atm}(15$ $\%$ ）．

