1．A thermo gate consists of a 6061－T6－aluminum plate $A B$ and an Am－1004－T61－magnesium plate $C D$ ，each having a width of 15 mm and fixed supported at their ends．（a）If the gap between them is 1.5 mm when the temperature is $T_{1}=25^{\circ} \mathrm{C}$ ，determine the temperature required to just close the gap．（b）Also，what is the axial force in each plate if the temperature becomes $T_{2}=100^{\circ} \mathrm{C}$ ？Assuming bending or buckling will not occur．The Young＇s modulus and coefficient of thermal expansion for both materials are as follows： $E_{a l}=68.9 \mathrm{GPa}, \alpha_{a l}=24 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ for aluminum
$E_{m g}=44.7 G P a, \alpha_{m g}=26 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ for magnesium

2．The material distorts into the dashed position shown．Determine（a）the average normal strains $\varepsilon_{x}, \varepsilon_{y}$ and the shear strain $\gamma_{x y}$ at A ，and（b）the average normal strain along line $A D$ ．［25\％］

3．A cantilever beam $A B$ carrying two concentrated loads P（Fig．3）has a rectangular cross section of width b and height h ．（a）Determine the reaction for the beam．（b）Construct the shear－force and bending－moment diagrams for the beam．（c）Determine the maximum bending and transverse shear stress in the beam．（25\％）

Fig． 3

4．Due to the applied loading，the element at point A on the outer surface of solid cylinder in Fig． 4 is subjected to the state of stress．（a）Make a sketch for the view of stress of element A and show the values of the stress．（b）Determine the principal stresses acting at element A．（c）Determine the maximum in－plane shear stress at element A．（25\％）

Fig． 4

