國立高雄應用科技大學 100 學年度碩士班招生考試

金融資訊研究所

統計學

試題 共2頁,第1頁

注意:a.本試題共6題,每題之配分均註明於題目中,共100分。 b.作答時不必抄題。 c.請詳細寫出求解與證明過程,否則不予計分。 d.考生作答前請詳閱答案卷之考生注意事項。

- Let X₁,..., X₂₅ be a random sample from N(μ_X, 25) and Y₁,...,Y₉ be a random sample from N(μ_Y, 36). These samples are assumed to be independent and let X̄ and Ȳ be their sample average respectively.
 - (1) What's the distribution of $2\overline{X} + \overline{Y}$? (10%)
 - (2) For testing the hypothesis μ_x μ_y = 4 versus the alternative μ_x μ_y ≠ 4, what test statistic will you use? What's the exact distribution of this test statistic? (10%)

- (1) Prove the following statements: If X₁ and X₂ are two random variables, then E(X₂) = E[E(X₂ | X₁)], where E(X₂ | X₁) is the conditional expectation of X₂ given X₁. [Hint: This is the law of iterated expectation] (10%)
- (2) Suppose that X₁, X₂,... are i.i.d. Exponential random variables with mean μ. Let N be a Poisson random variable (independent of the X_i's) with mean λ. Define the random variable Y = ∑_{i=1}^N X_i where Y = 0 if N = 0. Find E(Y). (10%)

^{2.}

- 3. Let $X_1, ..., X_n$ be a random sample from a Poisson distribution with parameter λ and let $\hat{\lambda} = n^{-1} \sum_{i=1}^{n} X_i$ be an estimator of λ . Find the bias, standard error, and mean squared error of this estimator. (15%)
- 4. Let X₁,...,X_n be a random sample from Uniform distribution U(0,θ), θ > 0.
 (1) Find the method of moment estimator θ̂ of θ. [Hint: Use the first moment.]
 (5%)
 - (2) Prove that $\hat{\theta}$ is an unbiased and consistent estimator of θ . (10%)
- 5. Prove the following statement. (20%)
 Let *X* and *Y* be two random variables. The variance of *X* can be decomposed as var(*X*) = *E*[var(*X* | *Y*)] + var[*E*(*X* | *Y*)]
- 6. John estimates the following regression model (the figures in the parenthesis are the standard error of the parameter estimates)

 $\hat{y}_i = 0.683 + 0.402 x_{2i} - 0.891 x_{3i}, \quad R^2 = 0.96$ (0.436) (0.291) (0.763)

By considering the *t*-ratio and the value of R^2 , Mary thinks that there may be a serious problem in such regression. What the problem might be? How might you go about solving the perceived problem? (10%)