國立高雄應用科技大學 100 學年度碩士班招生考試

金融資訊研究所

准考證號碼 $\square \square \square \square \square \square \square \square \square$（考生必須填寫）

統計學

試題 共 2 頁，第 1 頁
注意：a．本試題共 6 題，每題之配分均註明於題目中，共 100 分。
b．作答時不必抄題。
c．請詳細寫出求解與證明過程，否則不予計分。
d．考生作答前請詳閱答案卷之考生注意事項。

1．Let X_{1}, \ldots, X_{25} be a random sample from $N\left(\mu_{X}, 25\right)$ and Y_{1}, \ldots, Y_{9} be a random sample from $N\left(\mu_{Y}, 36\right)$ ．These samples are assumed to be independent and let \bar{X} and \bar{Y} be their sample average respectively．
（1）What＇s the distribution of $2 \bar{X}+\bar{Y}$ ？（10\％）
（2）For testing the hypothesis $\mu_{X}-\mu_{Y}=4$ versus the alternative $\mu_{X}-\mu_{Y} \neq 4$ ， what test statistic will you use？What＇s the exact distribution of this test statistic？（10\％）
2.
（1）Prove the following statements：If X_{1} and X_{2} are two random variables， then $E\left(X_{2}\right)=E\left[E\left(X_{2} \mid X_{1}\right)\right]$ ，where $E\left(X_{2} \mid X_{1}\right)$ is the conditional expectation of X_{2} given X_{1} ．［Hint：This is the law of iterated expectation］ （10\％）
（2）Suppose that X_{1}, X_{2}, \ldots are i．i．d．Exponential random variables with mean μ ．Let N be a Poisson random variable（independent of the X_{i}＇s）with mean λ ．Define the random variable $Y=\sum_{i=1}^{N} X_{i}$ where $Y=0$ if $N=0$ ．Find $E(Y) .(10 \%)$

3．Let X_{1}, \ldots, X_{n} be a random sample from a Poisson distribution with parameter λ and let $\hat{\lambda}=n^{-1} \sum_{i=1}^{n} X_{i}$ be an estimator of λ ．Find the bias，standard error，and mean squared error of this estimator．（15\％）

4．Let X_{1}, \ldots, X_{n} be a random sample from Uniform distribution $U(0, \theta), \theta>0$ ．
（1）Find the method of moment estimator $\hat{\theta}$ of θ ．［Hint：Use the first moment．］ （5\％）
（2）Prove that $\hat{\theta}$ is an unbiased and consistent estimator of θ ．（10\％）

5．Prove the following statement．（20\％）
Let X and Y be two random variables．The variance of X can be decomposed as

$$
\operatorname{var}(X)=E[\operatorname{var}(X \mid Y)]+\operatorname{var}[E(X \mid Y)]
$$

6．John estimates the following regression model（the figures in the parenthesis are the standard error of the parameter estimates）

$$
\begin{aligned}
\hat{y}_{i}= & 0.683+0.402 x_{2 i}-0.891 x_{3 i}, \quad R^{2}=0.96 \\
& (0.436)(0.291)(0.763)
\end{aligned}
$$

By considering the t－ratio and the value of R^{2} ，Mary thinks that there may be a serious problem in such regression．What the problem might be？How might you go about solving the perceived problem？（10\％）

