國立高雄應用科技大學 100 學年度碩士班招生考試

電機工程系(乙組)

控制系統

試題 共2頁,第1頁

注意:a.本試題共 6 題,每題 分,共100分。 b.作答時不必抄題。 c.考生作答前請詳閱答案卷之考生注意事項。

1. (15%) An unity feedback system with loop transfer function: $G(s)H(s) = \frac{k_1 s + k_2}{s^2 + 2s - 1}$

Determine the $[k_1, k_2]$ pair so that the following condition hold:

(a) Steady state error for step input $e_{ss}|_{\underline{1}} \leq 0.1$

- (b) Maximum overshoot $po \leq 5\%$
- (c) Settling time $t_s < 1.5 \text{ sec}$
- 2. (15%) An unity feedback system formed by open loop transfer function: $G(s) = \frac{ks(s+2)}{(s^2 - 4s + 8)(s+3)}$
 - (a) Find the range of k for stability
 - (b) Find the frequency of oscillation when the system is marginally stable
 - (c) What do you expect about the system's stability when the zero at $s_z = 0$ is removed

3. (15%) A system is described by the following state space equations:

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -(a+k) & -(a+1) \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \qquad y(t) = \begin{bmatrix} k & 0 \end{bmatrix} x(t)$$

where a and k are the uncertain constants

- (a) Find its steady state error e_{ss} for an unit step input
- (b) Find the sensitivity of e_{ss} to a and k

試題 共2頁,第2頁

4. (15%) Given the Plant:

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -3 & 5 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \qquad y(t) = \begin{bmatrix} 178 & 0 \end{bmatrix} x(t)$$

Use pole placement method to design a state feedback controller u(t) = -kx(t)in order to stabilize it and yield 10% overshoot, 0.5sec settling time for a step input.

5. (15%) A discrete control system is shown as on the diagram below:

$$G(z) = \frac{k(z+0.8)}{(z-1)(z-0.6)}$$

- (a) Draw the root locus of the system for $k = 0 \sim \infty$
- (b) Find the range of k such that the system remains stable
- 6. (25%) Briefly answer the following questions:(可用中文回答)
 - (a) Why a Bode plot can't be used for stability analysis for a non-minimum phase transfer function?
 - (b) If a system's transfer function can be minimal realized to lower order, what can you tell about its controllability and observability?
 - (c) By adding a zero to open loop transfer function, what are the effects on the system's stability and bandwidth?
 - (d) For linear time invariant system: $\dot{x}(t) = Ax(t)$ where A is non-singular (i) Define the equilibrium state
 - (ii) Describe the Lyapunov stability theorem for the system.
 - (e) For the above system in (d), find its state transition matrix and explain how this matrix influences the initial states if it is a stable system.