國立高雄應用科技大學 100 學年度碩士班招生考試 機械與精密工程研究所(乙組)

准考證號碼□□□□□□□□□ (考生必須填寫)

自動控制

試題 共3頁,第1頁

注意:a. 本試題共5題,每題20分,共100分。

- b. 作答時不必抄題。
- c. 考生作答前請詳閱答案卷之考生注意事項。
- 1. The second order system with overall transfer function $\frac{Y(s)}{U(s)} = \frac{4}{s^2 + 2s + 4}$ is applied a unit step input u(t) = 1. Assume that all the initial conditions are zero.
- (1) Find the damping ratio, natural frequency, and damped natural frequency of the system. (5%)
- (2) Find the transient response of the system. (5%)
- (3) Find the peak time and maximum overshoot of the system. (5%)
- (4) Find the steady state output of the system and settling time within 5% of the final value. (5%)

2. For the control system shown in Figure 1, the transfer functions are given as

$$G_1(s) = \frac{1}{s+2}$$
, $G_2(s) = \frac{1}{s+1}$, and $H(s) = 1$.

- (1) Find the overall transfer function relating R(s) and Y(s). (5%)
- (2) Find the overall transfer function relating R(s) and E(s). (5%)
- (3) Find the transient response of the system with an impulse input $r(t) = \delta(t)$. (5%)
- (4) Find the transient response of the system with a sinusoidal input $r(t) = \sin t$. (5%)

Figure 1

3. The control system shown in Figure 2 has a forward-path transfer function

$$G(s) = \frac{K(s+3)}{(s+2)(s-2)}$$
 and negative unit feedback loop.

- (1) Find the value of the gain K for stability. (5%)
- (2) Find the break-in and breakaway points. (5%)
- (3) Sketch the root-locus diagram of the system. (10%)

- 4. The overall transfer function of the system is $G(s) = \frac{s}{(s+2)(s^2+2s+4)}$.
- (1) Find the equations for magnitude and phase. (5%)
- (2) Construct bode diagrams for s, $\frac{1}{s+2}$, and $\frac{1}{s^2+2s+4}$ individually using Figure 3. (15%)

Figure 3

- 5. The control system with Call transfer function $\frac{Y(s)}{U(s)} = \frac{s+3}{s^2+3s+2}$ is applied an impulse input u(t) Assume that all the initial conditions are zero.
- (1) Find the state space equation $\dot{X} = AX + BU$ and output equation Y = CX. (5%)
- (2) Find the characteristic equation and matrix $(sI A)^{-1}$. (5%)
- (3) Find state variable $\mathfrak{Y}(0)$ and output y(t). (10%)

$$0.1$$
 1 10 100

-20

-40