國立高雄應用科技大學 100 學年度碩士班招生考試 機械與精密工程研究所(丙組)

准考證號碼□□□□□□□□ (考生必須填寫)

材料工程概論

試題 共1頁,第1頁

注意:a.本試題共8題,每題25分,共200分。

b.作答時不必抄題。

c.考生作答前請詳閱答案卷之考生注意事項。

- 1. 欲分別強化高碳鋼、鋁合金(例如2014)與沃斯田鐵系不鏽鋼之方法與原理為何?
- 2. 試(1)說明拉伸與衝擊實驗可得到材料哪些機械性質(2)推導工程應力(σ_e)、應變(ε_e)與真實應力(σ_t)、應變之關係式(ε_t)。
- 3. 試以滑動系統說明金屬主要結晶構造之基本機械性質。
- 4. 試繪 Fe-C 平衡圖, 說明圖中之三相點、純鐵與鋼之所有變態點與組織。
- 5. 分別說明碳鋼的淬火、回火和退火之目的、加熱溫度、冷卻方法與所得組織。
- 6. BCC 與 FCC 結構之孔隙分率為何?說明碳為何固溶入α-鐵(BCC)之固溶量遠低於γ-鐵(FCC)?

7.Caculate the lattice parameter, packing factor, and density expected for cubic BaTiO₃(Fig.1).[$r_O = 0.132$ nm, $r_{Ti} = 0.068$ nm, and $r_{Ba} = 0.134$ nm. $m_O = 16$ g/mol, . $m_{Ti} = 47.9$ g/mol, and . $m_{Ba} = 137.3$ g/mol]

8. Calculate the atomic fraction of copper in aluminum for a two component alloy containing 5 wt% copper.($m_{Cu} = 63.54 \text{ g/mol}$, and $.m_{Al} = 26.9 \text{ g/mol}$)

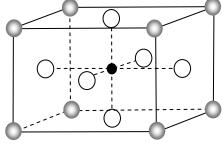


Fig.1

Ba

() Ti ● O