國立高雄第一科技大學 100 學年度 碩士班 招生考試 試題紙

系 所 別: 電腦與通訊工程系 組 別: 晶片設計組

考科代碼: 1215 考 科: 線性代數

注意事項:

1、本科目得使用本校提供之電子計算器。

2、請於答案卷上規定之範圍作答,違者該題不予計分。

請依題目順序作答,並寫出主要的推導或計算過程(否則將扣分)。

Let $A\mathbf{x} = \mathbf{b}$ be a linear system whose augmented matrix $(A \mid \mathbf{b})$ has reduced row

and the fourth column vectors of A, respectively, determine **b**. (If **b** can not be determined, answer **NOT EXIST**) (10%)

2 Given
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & 6 \\ -3 & 3 & -5 \end{bmatrix}$$
 and $b = \begin{bmatrix} 9 \\ 0 \\ \beta \end{bmatrix}$, where β is a real number.

- 2.1 For what values of β will the system $A\mathbf{x} = \mathbf{b}$ have infinite many solutions? (If no such β exists, answer **NOT EXIST**) (4%)
- 2.2 Find matrices E_1 , E_2 and U such that $E_2E_1A=U$, where E_1 and E_2 are elementary (not identity) matrices, and U is a unit upper triangular matrix. (6%)

3 Evaluate the determinant of
$$\begin{bmatrix} e & 1+e & 2+e & 3+e \\ -1+2e & 2e & 1+2e & 2+2e \\ -2+3e & -1+3e & 3e & 1+3e \\ -3+4e & -2+4e & -1+4e & 4e \end{bmatrix}$$
, where $e=$ 2.7183. (10%)

第1頁,合計2頁【尚有試題】

- Given $\mathbf{x} = \begin{bmatrix} 5 \\ 9 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, and $S = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$. Find the coordinate vector of \mathbf{x} with respect to $[\mathbf{u}_1, \mathbf{u}_2]$, where S will be the transition matrix from $[\mathbf{u}_1, \mathbf{u}_2]$ to $[\mathbf{v}_1, \mathbf{v}_2]$. (10%)
- Let $L: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation defined by $L(\mathbf{x}) = (x_1, x_2, 2x_1 3x_2)^T$, where $\mathbf{x} = (x_1, x_2)^T$.
 - 5.1 Is L one-to-one? Please answer Yes or No. (5%)
 - 5.2 Determine the image of the subspace S, which is spanned by $(1, 0)^T$. (5%)
 - 5.3 Find the matrix A representing L with respect to $[\mathbf{u}_1, \mathbf{u}_2]$ and $[\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3]$, where $\mathbf{u}_1 = (5, 3)^T$, $\mathbf{u}_2 = (4, 1)^T$, $\mathbf{b}_1 = (1, 0, 1)^T$, $\mathbf{b}_2 = (0, 1, 0)^T$, $\mathbf{b}_3 = (1, 1, 2)^T$. (10%)

$$6 \qquad \text{Given } A = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{bmatrix}.$$

- Factor A = QR, where Q is an 4×3 matrix with orthonormal column vectors and R is an upper triangular 3×3 matrix whose diagonal entries are all positive. (10%)
- 6.2 Find a vector $\mathbf{q}_4 \in \mathbb{R}^4$ such that the augmented matrix $(Q \mid \mathbf{q}_4)$ is an orthogonal matrix. (10%)

7 Let
$$A = \begin{bmatrix} 2 & 2 & -1 \\ 2 & 5 & -2 \\ 3 & 6 & -2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 8 \\ 0 \\ 6 \end{bmatrix}$. (Hint: $3^{10} = 59049$)

- 7.1 Find a nonsingular matrix X and a diagonal matrix D such that A can be factored into a product $A = XD^2X^{-1}$. (10%)
- 7.2 Compute A^{10} **b** (10%)