國立新竹教育大學 100 學年度碩、博士班招生考試試題 所別:應用數學系碩士班 科目:微積分(本科總分 150 分,含初等微積分、高等微積分) ※ 請橫書作答

1. Find the limits
$$(a) \lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$
 (7%) $(b) \lim_{x \to \infty} \left(1 + \frac{2}{x^2} \right)^x$ (8%)
 $(c) \lim_{n \to \infty} \sum_{k=1}^n \left(\frac{8}{n} \left[-1 + \frac{4k}{n} \right]^4 - \frac{32}{n} \right)$ (10%)

2. (a) State the Intermediate Value Theorem \circ (5%)

(b)Show that there are always two points opposite from each other with the same temperature on a circular wire ring \circ (15%)

- 3. Suppose $f(x) = x^{\frac{1}{x^5}}$ prove that f is uniformly continuous on $[1,\infty) \circ (20\%)$
- 4. Give an example of $\{a_{ik}\}$ and $\{b_i\}$ such that $a_{ik} > 0$ for $i, k \in \mathbb{N}, b_i = \sum_{k=1}^{\infty} a_{ik}$ and $\sum_{i=1}^{\infty} b_i < \infty \circ (10\%)$
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ satisfy $|f(x) f(y)| \le |x y|^2$ for any $x, y \in \mathbb{R}$. Prove that f is a constant function. (15%)
- 6. Consider the function F(x, y) = 3x⁴ 4x²y + y².
 (a) Show that along every line L⊂ ℝ² through the origin the restriction of F to L has a local minimum at (0,0). (10%)
 (b) Prove or disprove that F: ℝ² → ℝ has a local minimum at (0,0). (15%)
- 7. Suppose $\{p_n\}$ and $\{q_n\}$ are Cauchy sequences in a metric space X. Show that the sequence $\{d(p_n, q_n)\}$ converges. (15%)

8. Consider the function $f(x) = \frac{\ln x}{x}$.

(a) Show that f is increasing on (0,e) and decreasing on (e,∞) . (10%)

- (b)Explain which the following holds :
 - (i) $e^{\pi} > \pi^{e}$ (ii) $e^{\pi} < \pi^{e}$ (iii) $e^{\pi} = \pi^{e}$ (10%)