國立彰化師範大學 100 學年度碩士班招生考試試題

系所:電子工程學系,電信工程研究所

科目: 電子學

☆☆請在答案紙上作答☆☆

共1頁,第1頁

- 1. For the circuit shown in Fig.1, assume C_{C1} and C_{C2} are large enough for ac signal coupling. Also β of the BJT is 100, Early voltage $V_A = \infty$, $V_{BE(on)} = 0.7 \, \text{V}$, $V_{CC} = 12 \, \text{V}$, $R_L = 2 \, \text{k}\Omega$, $R_E = 2 \, \text{k}\Omega$, $R_C = 4 \, \text{k}\Omega$, $R_1 = 20 \, \text{k}\Omega$, and $R_2 = 10 \, \text{k}\Omega$. (a) Determine the Q-point values (namely, V_{CE} , I_{C_1} and I_{B_1}). (b) Find the small-signal voltage gain $A_v = v_o/v_s$. (V_T is 0.026 V at room temperature.) (20%)
- 2. For the common-gate circuit shown in Fig. 2, the n-MOSFET parameters are: $V_t = 1 \, \mathrm{V}$, the conduction parameter $k_n = \frac{1}{2} \, \mu_n C_{ox} \frac{W}{L} = 3 \, \mathrm{mA/V^2}$, and $V_A = \infty$. (a) Determine I_D and V_{DS} . (b) Calculate g_m (= $2 \, \sqrt{k_n I_D}$) and r_o . (c) Find the small-signal voltage gain $A_v = v_o/v_i$. (Assume C_{C1} and C_{C2} are large enough for ac signal coupling.) (20%)
- 3. For the voltage-to-current converter shown in Fig. 3, assume ideal op amp and design $R_3/R_2=R_F/R_1$. Show that the load current $i_L=-v_I/R_2$, and is independent of the load impedance Z_L . (20%)
- 4. Consider a CS amplifier whose high frequency equivalent model shown in Fig. 4. The transistor has $W/L=3.6~\mu\text{m}/0.18~\mu\text{m}$, $\mu_n C_{o~x}=200~\mu\text{A}/\text{V}^2$, the bias current is 200 μA , $V_A=3~\text{V}$, $C_{g~s}=20~\text{fF}$, $C_{gd}=5~\text{fF}$, $C_L=20~\text{fF}$, $R_L=30~\text{k}\Omega$ and $R_{sig}=10~\text{k}\Omega$. Find A_M, f_{3dB}, f_t, f_z . (20%)
- 5. Find the voltage gain and the input resistance of the amplifier shown in Fig. 5. Assume β =100. (20%)

