國立彰化師範大學 100 學年度碩士班招生考試試題

系所:<u>機電工程學系</u>

☆☆請在答案紙上作答☆☆

共1頁,第1頁

科目: 工程數學

1. (25%)

(a) Solve the following differential equation (15%)

$$y''' - 5y'' + 8y' - 4y = e^{2x} + 2e^{x} + 3e^{-x}$$

(b) Solve the following differential equation(10%)

$$\frac{y'}{y^4} + \frac{1}{3y^3} = \frac{1}{3}(1 - 2x)$$

2. (25%)

Solve the initial value problem for the system

$$\begin{cases} y_1' - y_1 = 6u(t-2)e^{4t} \\ y_2' - y_1 - 2y_2 = 0 \end{cases}$$
$$y_1(0) = 0, y_2(0) = 1$$

Where u(t-2) is an unit step function or Heaviside function

3. (30%)

(a). Explain The Green's theorem, Divergence theorem, and Stokes's Theorem Mathematically. (12%)

(b). Explain the relation between the Green's Theorem and the Stokes's Theorem. (3%)

(c). Explain and prove why the Green's theorem does not exist for the following double integrals? (15%),

$$\iint_{R} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y}\right) dxdy, where, F_{1} = \frac{y}{x^{2} + y^{2}}, F_{2} = \frac{x}{x^{2} + y^{2}},$$

$$R: x^2 + y^2 = 1$$

4. (20%)

Write the solution for the following system of linear equation in the form $X = X_h + X_p$ for the following equation, where X_h is the solution for AX=0 and X_p is a particular solution of AX=b, and $X=(x_1,x_2,x_3)^T$

$$\begin{cases} x_1 + 3x_2 + 10x_3 = 18 \\ -2x_1 + 7x_2 + 32x_3 = 29 \\ -x_1 + 3x_2 + 14x_3 = 12 \\ x_1 + x_2 + 2x_3 = 8 \end{cases}$$