國立彰化師範大學 100 學年度碩士班招生考試試題

系所： \qquad物理學系 ふ請在答案紙上作答 \mathcal{N}

組別：甲組
\qquad科目： \qquad物理數學

1．（18\％）Given a force $\vec{F}=\left(2 y, x, z^{2}\right)$ in the Cartesian coordinates，evaluate the work done by it from $(0,0,0)$ to $(1,1,1)$ along the following curves：（a）the rectilinear path from $(0,0,0)$ to $(1,0,0)$ to $(1,1,0)$ to $(1,1,1)$ ；（b）the curve which is the intersection of the paraboloid $x^{2}+y^{2}=2 z$ and the plane $x=y$ ．

2．The amplitude $A(\vec{r})$ of a scalar wave satisfies the wave equation

$$
\nabla^{2} A=\frac{1}{v^{2}} \frac{\partial^{2} A}{\partial t^{2}}
$$

where v is the wave speed．Suppose that $A(\vec{r})$ depends only on r and t ，i．e．$A=A(r, t)$ ，where $r=|\vec{r}|$ ．
（a）（9\％）Show that the wave equation can be written as

$$
\frac{\partial^{2}}{\partial r^{2}}(r A)=\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}(r A)
$$

（b）（9\％）Show that if $A(r, 0)=0$ and $\partial A / \partial t(r, 0)=0$ ，then

$$
\left(\frac{d^{2}}{d r^{2}}-k^{2}\right) r \bar{A}=0
$$

where $\bar{A}(r, s)$ is the time Laplace transform of $A(r, t)$ and $k=\sqrt{s / v}$ ．
（c）（14\％）In terms of the solution to the differential equation in（b），show that the solution of the wave equation satisfying the initial conditions given in（b）is of the form

$$
A(r, t)=\frac{f(t-r / v)}{r},
$$

provided that $f(t)=0$ for $t<0$ ．

3．A light string of length $3 a_{0}$ is stretched between two fixed points a distance $3 a$ apart（ $a>a_{0}$ ）． Two particles of mass m are attached so as to divide the string into three equal sections．The system rests on a smooth horizontal plane and the particles can perform longitudinal horizontal oscillations． Assuming that the displacements of the two particles are small（compared with a ），
（a）（5\％）show that the equations of motion for $x_{1}(t)$ and $x_{2}(t)$ ，the displacements of the particles respectively，are

國立彰化師範大學 100 學年度碩士班招生考試試題

系所： \qquad
物理學系
組別： \qquad
认訜請在答案紙上作答认
科目： \qquad

共2頁，第2頁

$$
\begin{aligned}
& \ddot{x}_{1}+n^{2}\left(2 x_{1}-x_{2}\right)=0 \\
& \ddot{x}_{2}+n^{2}\left(-x_{1}+2 x_{2}\right)=0
\end{aligned}
$$

where $n^{2}=k / m$ and the tension is k times the extension．
（b）（10\％）Find the eigen－frequencies of this system and their corresponding eigenvectors．
（c）（10\％）Write down the solutions corresponding to each normal mode and give a sketch showing how the system vibrates in each case．

4．The Legendre polynomials，$\left\{P_{n}(x)\right\}$ ，are defined on the interval $-1 \leq x \leq 1$ via a generating function $g(x, t)$ by the relation

$$
g(x, t)=\left(1-2 x t+t^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} P_{n}(x) t^{n} .
$$

（a）（5\％）If a function $f(x)$ can be Legendre－expanded as

$$
f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}} P_{n}(x)
$$

within the interval $-1 \leq x \leq 1$ ．What is the function $f(x)$ ？
（b）（ 10% ）Find the values of the integral

$$
\int_{-1}^{1} x^{2} P_{n}(x) d x
$$

5．（10\％）Find the value of the integral

$$
I=\int_{0}^{\infty} \frac{d x}{(x+4)^{3} x^{1 / 2}} .
$$

