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1. (18%) Given a force )2,,(2 zxyF =  in the Cartesian coordinates, evaluate the work done by it from 

(0,0,0) to (1,1,1) along the following curves: (a) the rectilinear path from (0,0,0) to (1,0,0) to (1,1,0) to 
(1,1,1); (b) the curve which is the intersection of the paraboloid zy  and the plane x = y. x 222 =+

 
2. The amplitude ( )rA  of a scalar wave satisfies the wave equation 
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   where v is the wave speed. Suppose that ( )rA  depends only on r and t, i.e. ( )trAA ,= , where 

rr = .  

(a) (9%) Show that the wave equation can be written as 
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(b) (9%) Show that if ( ) 00, =r  and A ( ) 00, =∂
∂ rt
A , then 
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      where ( srA , )  is the time Laplace transform of ( )trA ,  and v
sk = . 

(c) (14%) In terms of the solution to the differential equation in (b), show that the solution of the 
wave equation satisfying the initial conditions given in (b) is of the form 
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    provided that 0)( =tf  for . 0<t
 

3. A light string of length 03a  is stretched between two fixed points a distance a3  apart )( 0aa > . 
Two particles of mass m are attached so as to divide the string into three equal sections. The system 
rests on a smooth horizontal plane and the particles can perform longitudinal horizontal oscillations. 
Assuming that the displacements of the two particles are small (compared with a),  

 
(a) (5%) show that the equations of motion for )(1 tx  and )(2 tx , the displacements of the particles 

respectively, are 
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       where  and the tension is k times the extension. mkn /2 =
 

(b) (10%) Find the eigen-frequencies of this system and their corresponding eigenvectors. 
 
(c) (10%) Write down the solutions corresponding to each normal mode and give a sketch showing 

how the system vibrates in each case. 
 
4. The Legendre polynomials, { })(xPn , are defined on the interval 11 ≤≤− x  via a              

generating function ),( txg  by the relation 
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(a) (5%) If a function )(xf  can be Legendre-expanded as 
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   within the interval 11 ≤≤− x . What is the function ? )(xf
 
(b) (10%) Find the values of the integral 
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5. (10%) Find the value of the integral 
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